Design and Analysis of Experiments

Author: Angela M. Dean
Publisher: Springer Science & Business Media
ISBN: 0387226346
Format: PDF, Kindle
Download Now
This book offers a step-by-step guide to the experimental planning process and the ensuing analysis of normally distributed data, emphasizing the practical considerations governing the design of an experiment. Data sets are taken from real experiments and sample SAS programs are included with each chapter. Experimental design is an essential part of investigation and discovery in science; this book will serve as a modern and comprehensive reference to the subject.

Introduction to Time Series and Forecasting

Author: Peter J. Brockwell
Publisher: Springer Science & Business Media
ISBN: 1475725264
Format: PDF, Docs
Download Now
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Statistical Analysis and Data Display

Author: Richard M. Heiberger
Publisher: Springer Science & Business Media
ISBN: 1475742843
Format: PDF, Kindle
Download Now
This presentation of statistical methods features extensive use of graphical displays for exploring data and for displaying the analysis. The authors demonstrate how to analyze data—showing code, graphics, and accompanying computer listings. They emphasize how to construct and interpret graphs, discuss principles of graphical design, and show how tabular results are used to confirm the visual impressions derived from the graphs. Many of the graphical formats are novel and appear here for the first time in print.

Fundamentals of Mathematical Statistics Statistical inference

Author: Hung T. Nguyen
Publisher: Springer Verlag
ISBN: 9780387970202
Format: PDF, Mobi
Download Now
This is a text (divided into two volumes) for a two semester course in Mathematical Statistics at the Senior/Graduate level. The two main pedagogical aspects in these Volumes are: (i) the material is designed in lessons (each for a 50 minute class) with complementary exercises and home work. (ii) although the material is traditional, great care is exerted upon self-contained, rigorous and complete presentations. An elementary introduction to characteristic functions and probability measures and intergration, but not general measure theory in Volume I, allows a complete proof of some central limit theorems and a rigorous treatment of asymptotic of statistical inference. But students need to be familiar only with such things as Jacobians and eigenvalues of matrices. Volume II: Statistical Inference is designed for the second semester and contains a rigorous introduction to Mathematical Statistics, from random samples to asymptotic theory of statistical inference.