Crystal Growth Technology

Author: K. Byrappa
Publisher: Springer Science & Business Media
ISBN: 9783540003670
Format: PDF, ePub
Download Now
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.

Crystal Growth Technology

Author: Hans J. Scheel
Publisher: John Wiley & Sons
ISBN: 3527632891
Format: PDF, ePub
Download Now
Semiconductors and dielectrics are two essential materials found in cell phones and computers, for example, and both are manufactured by growing crystals. Edited by the organizers of the International Workshop on Crystal Growth Technology, this ready reference is essential reading for materials scientists, chemists, physicists, computer hardware manufacturers, engineers, and those working in the chemical and semiconductor industries. They have assembled an international team of experts who present the current challenges, latest methods and new applications for producing these materials necessary for the electronics industry using bulk crystal growth technology. From the contents: * General aspects of crystal growth technology * Compound semiconductors * Halides and oxides * Crystal growth for sustaining energy * Crystal machining

Crystal Growth Technology

Author: Kullaiah Byrappa
Publisher: William Andrew
ISBN: 9780080946856
Format: PDF
Download Now
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with ""Growth Histories of Mineral Crystals"" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.

Technology of Gallium Nitride Crystal Growth

Author: Dirk Ehrentraut
Publisher: Springer Science & Business Media
ISBN: 9783642048302
Format: PDF, Docs
Download Now
This book discusses the important technological aspects of the growth of GaN single crystals by HVPE, MOCVD, ammonothermal and flux methods for the purpose of free-standing GaN wafer production.

Crystal Growth From Fundamentals to Technology

Author: Georg Müller
Publisher: Elsevier
ISBN: 9780080473079
Format: PDF, ePub, Mobi
Download Now
The book contains 5 chapters with 19 contributions form internationally well acknowledged experts in various fields of crystal growth. The topics are ranging from fundamentals (thermodynamic of epitaxy growth, kinetics, morphology, modeling) to new crystal materials (carbon nanocrystals and nanotubes, biological crystals), to technology (Silicon Czochralski growth, oxide growth, III-IV epitaxy) and characterization (point defects, X-ray imaging, in-situ STM). It covers the treatment of bulk growth as well as epitaxy by anorganic and organic materials.

Theoretical and Technological Aspects of Crystal Growth

Author: R. Fornari
Publisher: Trans Tech Publication
ISBN:
Format: PDF, Kindle
Download Now
This publication comprises the proceedings of the 10th International Summer School on Crystal Growth. It aims to provide an introduction to the main features of the science and technology of crystal growth.

Advances in Crystal Growth Inhibition Technologies

Author: Zahid Amjad
Publisher: Springer Science & Business Media
ISBN: 0306469243
Format: PDF, ePub
Download Now
In this book, academic researchers and technologists will find important information on the interaction of polymeric and non-polymeric inhibitors with a variety of scale forming crystals such as calcium phosphates, calcium carbonate, calcium oxalates, barium sulfate, calcium pyrophosphates, and calcium phosphonates. Moreover, the book delivers information to plant managers and formulators who would like to broaden and deepen their knowledge about processes involved in precipitation of sparingly soluble salts and learn more about the inhibitory aspects of various commercially available materials. Furthermore, experienced researchers will obtain fruitful and inspiring ideas from the easily accessible information about overlapping research areas, which will promote discoveries of new inhibitors (synthetic and/or natural) for the currently unmet challenges.

Vapor Crystal Growth Technology Development

Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781730736216
Format: PDF
Download Now
Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation. Rosenberger, Franz and Banish, Michael and Duval, Walter M. B. Glenn Research Center