Data Modeling Made Simple with CA ERwin Data Modeler r8

Author: Donna Burbank
Publisher: Technics Publications
ISBN: 1634620690
Format: PDF, ePub, Mobi
Download Now
Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.

Data Modeling Made Simple with CA ERwin Data Modeler R8

Author: Donna Burbank
Publisher: Technics Publications
ISBN: 1935504096
Format: PDF, ePub
Download Now
Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You'll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin's Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both 'top down' and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example.Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as 'real world' scenarios for context.Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries.Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin's Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8.As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.

Data Modeling Made Simple

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 163462016X
Format: PDF, Mobi
Download Now
Data Modeling Made Simple will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices. This book is written in a conversational style that encourages you to read it from start to finish and master these ten objectives: Know when a data model is needed and which type of data model is most effective for each situation Read a data model of any size and complexity with the same confidence as reading a book Build a fully normalized relational data model, as well as an easily navigatable dimensional model Apply techniques to turn a logical data model into an efficient physical design Leverage several templates to make requirements gathering more efficient and accurate Explain all ten categories of the Data Model Scorecard Learn strategies to improve your working relationships with others Appreciate the impact unstructured data has, and will have, on our data modeling deliverables Learn basic UML concepts Put data modeling in context with XML, metadata, and agile development Book Review by Johnny Gay In this book review, I address each section in the book and provide what I found most valuable as a data modeler. I compare, as I go, how the book's structure eases the new data modeler into the subject much like an instructor might ease a beginning swimmer into the pool. This book begins like a Dan Brown novel. It even starts out with the protagonist, our favorite data modeler, lost on a dark road somewhere in France. In this case, what saves him isn't a cipher, but of all things, something that's very much like a data model in the form of a map! The author deems they are both way-finding tools. The chapters in the book are divided into 5 sections. The chapters in each section end with an exercise and a list of the key points covered to reinforce what you've learned. I find myself comparing the teaching structure of the book to the way most of us learn to swim.

Data Modeling for the Business

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 1634620437
Format: PDF, ePub
Download Now
Did you ever try getting Businesspeople and IT to agree on the project scope for a new application? Or try getting Marketing and Sales to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse — without them dozing off? Whether you are a businessperson or an IT professional, you can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach and hands-on exercises to help you practice topics on your own. In this book, we review data modeling basics and explain why the core concepts stored in a high-level data model can have significant business impact on an organization. We explain the technical notation used for a data model and walk through some simple examples of building a high-level data model. We also describe how data models relate to other key initiatives you may have heard of or may be implementing in your organization. This book contains best practices for implementing a high-level data model, along with some easy-to-use templates and guidelines for a step-by-step approach. Each step will be illustrated using many examples based on actual projects we have worked on. Names have been changed to protect the innocent, but the pain points and lessons have been preserved. One example spans an entire chapter and will allow you to practice building a high-level data model from beginning to end, and then compare your results to ours. Building a high-level data model following the ten step approach you’ll read about is a great way to ensure you will retain the new skills you learn in this book. As is the case in many disciplines, using the right tool for the right job is critical to the overall success of your high-level data model implementation. To help you in your tool selection process, there are several chapters dedicated to discussing what to look for in a high-level data modeling tool and a framework for choosing a data modeling tool, in general. This book concludes with a real-world case study that shows how an international energy company successfully used a high-level data model to streamline their information management practices and increase communication throughout the organization—between both businesspeople and IT. Data modeling is one of the under-exploited, and potentially very valuable, business capabilities that are often hidden away in an organization’s Information Technology department. Data Modeling for the Business highlights both the resulting damage to business value, and the opportunities to make things better. As an easy-to follow and comprehensive guide on the ‘why’ and ‘how’ of data modeling, it also reminds us that a successful strategy for exploiting IT depends at least as much on the information as the technology. Chris Potts, Corporate IT Strategist and Author of fruITion: Creating the Ultimate Corporate Strategy for Information Technology One of the most critical systems issues is aligning business with IT and fulfilling business needs using data models. The authors of Data Modeling for the Business do a masterful job at simply and clearly describing the art of using data models to communicate with business representatives and meet business needs. The book provides many valuable tools, analogies, and step-by-step methods for effective data modeling and is an important contribution in bridging the much needed connection between data modeling and realizing business requirements. Len Silverston, author of The Data Model Resource Book series

Data Modeling with ERwin

Author: M. Carla DeAngelis
Publisher: Sams Publishing
ISBN: 9780672318689
Format: PDF, ePub
Download Now
From the first chapter, author Carla DeAngelis skillfully explains the normally complex concepts of Data Modeling-a critical success factor in the information-based enterprises of today. Carla tackles complex topics such as Logical Data Models, Modeling Methodologies, Relationships, and Attributes in a clear style that makes it simple for anyone to begin applying them immediately. Once the foundation has been laid, Carla teaches you to develop your own databases with ERwin. You will learn to use the tool to create primary keys and assign attributes, build data relationships with point and click ease, build and edit tables with Erwin's built-in editors, create indexes with the Index Editor, write custom SQL scripts, and process reports with the Report Tools.

The Nimble Elephant

Author: John Giles
Publisher: Technics Publications
ISBN: 1634620259
Format: PDF, ePub, Mobi
Download Now
“Get it done well and get it done fast” are twin, apparently opposing, demands. Data architects are increasingly expected to deliver quality data models in challenging timeframes, and agile developers are increasingly expected to ensure that their solutions can be easily integrated with the data assets of the overall organization. If you need to deliver quality solutions despite exacting schedules, “The Nimble Elephant” will help by describing proven techniques that leverage the libraries of published data model patterns to rapidly assemble extensible and robust designs. The three sections in the book provide guidelines for applying the lessons to your own situation, so that you can apply the techniques and patterns immediately to your current assignments. The first section, Foundations for Data Agility, addresses some perceived aspects of friction between “data” and “agile” practitioners. As a starting point for resolving the differences, pattern levels of granularity are classified, and their interdependencies exposed. A context of various types of models is established (e.g. conceptual / logical / physical, and industry / enterprise / project), and you will learn how to customize patterns within specific model types. The second section, Steps Towards Data Agility, shares guidelines on generalizing and specializing, with cautions on the dangers of going too far. Creativity in using patterns beyond their intended purpose is encouraged. The short-term “You Ain’t Gonna Need It” (YAGNI) philosophy of agile practitioners, and the longer-term strategic perspectives of architects, are compared and evaluated. Consideration is given to the potential of enterprise views contributing to project-specific models. Other topics include industry models, iterative modeling, creation of patterns when none exist, and patterns for rules-in-data. The section ends with a perspective on the modeler’s possible role in agile projects, followed by a case study. The final section, A Bridge to the Land of Object Orientation, provides a pathway for re-skilling traditional data modelers who want to expand their options by actively engaging with the ranks of object-oriented developers. I’m delighted to see that John has put his extensive experience and broad knowledge of data modeling into print! John’s ability to simplify the complex, and to share his knowledge and enthusiasm – and humor – with colleagues, comes through in this very useful and readable book. I recommend it to anyone working with data. — Monika Remenyi, Senior Data Architect, Telstra John Giles has written a compelling and engaging book about the importance of data modeling patterns in the world of agile computing. His book is clearly and simply written, and it is full of excellent examples drawn from his extensive experience as a practitioner. You will see the enthusiasm and passion that John clearly has for his work in data modeling. And you will see in his book that any interchange with John will always have its fair share of good humor and wisdom! — Professor Ron Weber, Dean, Faculty of IT, Monash University

Data Lake Architecture

Author: Bill Inmon
Publisher: Technics Publications
ISBN: 1634621190
Format: PDF
Download Now
Organizations invest incredible amounts of time and money obtaining and then storing big data in data stores called data lakes. But how many of these organizations can actually get the data back out in a useable form? Very few can turn the data lake into an information gold mine. Most wind up with garbage dumps. Data Lake Architecture will explain how to build a useful data lake, where data scientists and data analysts can solve business challenges and identify new business opportunities. Learn how to structure data lakes as well as analog, application, and text-based data ponds to provide maximum business value. Understand the role of the raw data pond and when to use an archival data pond. Leverage the four key ingredients for data lake success: metadata, integration mapping, context, and metaprocess. Bill Inmon opened our eyes to the architecture and benefits of a data warehouse, and now he takes us to the next level of data lake architecture.

A Modern Introduction to Probability and Statistics

Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Format: PDF, Kindle
Download Now
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

UML Database Modeling Workbook

Author: Michael Blaha
Publisher: Technics Publications
ISBN: 1634620720
Format: PDF, ePub, Mobi
Download Now
With our appetites for data on the rise, it has become more important than ever to use UML (Unified Modeling Language) to capture and precisely represent all of these data requirements. Learn how to construct UML data models by working through a series of exercises and self-assessment tests. Beginners can learn the UML directly. Experienced modelers can leverage their understanding of existing database notations, as the book extensively compares the UML to traditional data modeling (Information Engineering). 1. Discover a new way of representing data requirements and communicating better with your business customers. 2. Understand what UML constructs mean and how to properly use them. 3. Learn subtleties of the UML. Become a power UML developer. 4. Practice constructing data models with the exercises. The back of the book answers every exercise. 5. Assess your mastery of the material. Each part has a multiple-choice test that can quantify your understanding. 6. Improve your ability to abstract – think about different ways of representation – as you construct data models. 7. Measure the quality of your data models. 8. Be able to create database designs (DDL code) starting from a UML data model. 9. Be able to write SQL database queries using a data model as a blueprint. 10. Know the differences among operational models, data warehouse models, enterprise models, and master models. They are all aspects of data modeling. This book is concise and to the point. You will learn by induction through reading, practice, and feedback.

Modern Database Management Global Edition

Author: Jeff Hoffer
Publisher: Pearson Higher Ed
ISBN: 1292101865
Format: PDF, ePub, Mobi
Download Now
For introductory courses in Database Management. Provide the latest information in database development Focusing on what leading database practitioners say are the most important aspects to database development, Modern Database Management presents sound pedagogy, and topics that are critical for the practical success of database professionals. The Twelfth Edition further facilitates learning with illustrations that clarify important concepts and new media resources that make some of the more challenging material more engaging. Also included are general updates and expanded material in the areas undergoing rapid change due to improved managerial practices, database design tools and methodologies, and database technology.