Data Science

Author: Doug Rose
Publisher: Apress
ISBN: 1484222539
Format: PDF, ePub, Mobi
Download Now
Learn how to build a data science team within your organization rather than hiring from the outside. Teach your team to ask the right questions to gain actionable insights into your business. Most organizations still focus on objectives and deliverables. Instead, a data science team is exploratory. They use the scientific method to ask interesting questions and run small experiments. Your team needs to see if the data illuminate their questions. Then, they have to use critical thinking techniques to justify their insights and reasoning. They should pivot their efforts to keep their insights aligned with business value. Finally, your team needs to deliver these insights as a compelling story. Insight!: How to Build Data Science Teams that Deliver Real Business Value shows that the most important thing you can do now is help your team think about data. Management coach Doug Rose walks you through the process of creating and managing effective data science teams. You will learn how to find the right people inside your organization and equip them with the right mindset. The book has three overarching concepts: You should mine your own company for talent. You can’t change your organization by hiring a few data science superheroes. You should form small, agile-like data teams that focus on delivering valuable insights early and often. You can make real changes to your organization by telling compelling data stories. These stories are the best way to communicate your insights about your customers, challenges, and industry. What Your Will Learn: Create data science teams from existing talent in your organization to cost-efficiently extract maximum business value from your organization’s data Understand key data science terms and concepts Follow practical guidance to create and integrate an effective data science team with key roles and the responsibilities for each team member Utilize the data science life cycle (DSLC) to model essential processes and practices for delivering value Use sprints and storytelling to help your team stay on track and adapt to new knowledge Who This Book Is For Data science project managers and team leaders. The secondary readership is data scientists, DBAs, analysts, senior management, HR managers, and performance specialists.

Building Data Science Teams

Author: DJ Patil
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316778
Format: PDF
Download Now
As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be "data driven." The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.

Agile Analytics

Author: Ken Collier
Publisher: Addison-Wesley
ISBN: 032150481X
Format: PDF, ePub
Download Now
Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.

Principles of Data Science

Author: Sinan Ozdemir
Publisher: Packt Publishing Ltd
ISBN: 1785888927
Format: PDF, ePub
Download Now
Learn the techniques and math you need to start making sense of your data About This Book Enhance your knowledge of coding with data science theory for practical insight into data science and analysis More than just a math class, learn how to perform real-world data science tasks with R and Python Create actionable insights and transform raw data into tangible value Who This Book Is For You should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you. What You Will Learn Get to know the five most important steps of data science Use your data intelligently and learn how to handle it with care Bridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results Build and evaluate baseline machine learning models Explore the most effective metrics to determine the success of your machine learning models Create data visualizations that communicate actionable insights Read and apply machine learning concepts to your problems and make actual predictions In Detail Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means. Style and approach This is an easy-to-understand and accessible tutorial. It is a step-by-step guide with use cases, examples, and illustrations to get you well-versed with the concepts of data science. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world.

Big Data in Practice

Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1119231396
Format: PDF, ePub, Docs
Download Now
The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter

Big Data Demystified

Author: David Stephenson
Publisher: Pearson UK
ISBN: 1292218126
Format: PDF, ePub
Download Now
Big Data is a big topic, based on simple principles. Guided by leading expert in the field, David Stephenson, you will be amazed at how you can transform your company, and significantly improve KPIs across a broad range of business units and applications. Find out how an ecommerce company avoided two million product returns per year, how a newspaper saw triple-digit annual growth in digital subscriptions, how researchers in England learned to better detect pending cardiovascular problems, and how AI programs taught themselves to win games using techniques that even their human programmers didn’t understand, all thanks to big data. Find out also how one company realized it could swap a million dollar hardware system with a twenty thousand dollar replacement. With simple and straightforward chapters that allow you to map examples onto your own business, Big Data Demystified will help you: · Know which data is most useful to collect now and why it’s important to start collecting that data as soon as possible.· Understand big data and data science and how they can help you reach your business goals and gain competitive advantage.· Use big data to understand where you are now and how you can improve in the future. · Understand factors in choosing a big data system, including whether to go with cloud-based solutions.· Construct your big data team in a way that supports an effective strategy and helps make your business more data-driven. BIG DATA MAKES A BIG DIFFERENCE “Read this book! It is an essential guide to using data in a practical way that drives results." Ian McHenry, CEO Beyond Pricing “This is the book we’ve been missing: big data explained without the complexity.” Marc Salomon, Professor in Decision Sciences and Dean at University of Amsterdam Business School "Big Data for the rest of us! I have never come across a book that is so full of practical advice, actionable examples and helpful explanations. Read this one book and start executing Big Data at your workplace tomorrow!"Tobias Wann CEO at @Leisure Group

The Data Science Handbook

Author: Field Cady
Publisher: John Wiley & Sons
ISBN: 1119092949
Format: PDF, ePub, Docs
Download Now
A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

HBR Guide to Data Analytics Basics for Managers HBR Guide Series

Author: Harvard Business Review
Publisher: Harvard Business Press
ISBN: 1633694291
Format: PDF, ePub
Download Now
Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes

Storytelling with Data

Author: Cole Nussbaumer Knaflic
Publisher: John Wiley & Sons
ISBN: 1119002265
Format: PDF, Docs
Download Now
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!