Data Warehousing for Biomedical Informatics

Author: Richard E. Biehl
Publisher: CRC Press
ISBN: 1482215225
Format: PDF, ePub, Docs
Download Now
Data Warehousing for Biomedical Informatics is a step-by-step how-to guide for designing and building an enterprise-wide data warehouse across a biomedical or healthcare institution, using a four-iteration lifecycle and standardized design pattern. It enables you to quickly implement a fully-scalable generic data architecture that supports your organization’s clinical, operational, administrative, financial, and research data. By following the guidelines in this book, you will be able to successfully progress through the Alpha, Beta, and Gamma versions, plus fully implement your first production release in about a year. The Alpha version allows you to implement just enough of the basic design pattern to illustrate its core capabilities while loading a small sampling of limited data for demonstration purposes. This provides an easy way for everyone involved to visualize the new warehouse paradigm by actually examining a core subset of the working system. You can finish the Alpha version, also referred to as the proof-of-concept, in as little as 3-4 weeks. The Beta version, which can be completed in about 2-3 months, adds required functionality and much more data. It allows you to get the full warehouse up and running quickly, in order to facilitate longer-term planning, user and support team training, and setup of the operational environment. The Gamma version, which is a fully-functional system–though still lacking data–can be implemented in about 3-4 months. About one year after starting, you will be ready to launch Release 1.0 as a complete and secure data warehouse.

Medical Informatics Europe 99

Author: Peter Kokol
Publisher: IOS Press
ISBN: 9780967335513
Format: PDF, Kindle
Download Now
This volume seeks to reflect the state of the art on medical informatics. It presents ideas that will guide the process of medical informatics. Topics in the book include: information systems in health care and medicine; telemedicine and telematics; security; biomedical processing, data mining and knowledge discovery; training and education; Internet/intranet; resources management; intelligent medical systems; health guidelines and protocols; electronic patient encounter, card technology, electronic data interchange; terminology; nursing informatics.

Pediatric Biomedical Informatics

Author: John J. Hutton
Publisher: Springer Science & Business Media
ISBN: 9400751494
Format: PDF, Docs
Download Now
Advances in the biomedical sciences, especially genomics, proteomics, and metabolomics, taken together with the expanding use of electronic health records, are radically changing the IT infrastructure and software applications needed to support the transfer of knowledge from bench to bedside. Pediatric Biomedical Informatics: Computer Applications in Pediatric Research describes the core resources in informatics necessary to support biomedical research programs and how these can best be integrated with hospital systems to receive clinical information that is necessary to conduct translational research.The focus is on the authors’ recent practical experiences in establishing an informatics infrastructure in a large research-intensive children’s hospital. This book is intended for translational researchers and informaticians in pediatrics, but can also serve as a guide to all institutions facing the challenges of developing and strengthening informatics support for biomedical research. The first section of the book discusses important technical challenges underlying computer-based pediatric research, while subsequent sections discuss informatics applications that support biobanking and a broad range of research programs. Pediatric Biomedical Informatics provides practical insights into the design, implementation, and utilization of informatics infrastructures to optimize care and research to benefit children. Dr. John Hutton is the Vice President and Director of Biomedical Informatics at Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. He is also Professor of Pediatrics and Associate Dean for Information Services at the University of Cincinnati College of Medicine.

Health Informatics Data Analysis

Author: Dong Xu
Publisher: Springer
ISBN: 3319449818
Format: PDF
Download Now
This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.

Data Mining in Biomedical Imaging Signaling and Systems

Author: Sumeet Dua
Publisher: CRC Press
ISBN: 1439839395
Format: PDF, Kindle
Download Now
Data mining can help pinpoint hidden information in medical data and accurately differentiate pathological from normal data. It can help to extract hidden features from patient groups and disease states and can aid in automated decision making. Data Mining in Biomedical Imaging, Signaling, and Systems provides an in-depth examination of the biomedical and clinical applications of data mining. It supplies examples of frequently encountered heterogeneous data modalities and details the applicability of data mining approaches used to address the computational challenges in analyzing complex data. The book details feature extraction techniques and covers several critical feature descriptors. As machine learning is employed in many diagnostic applications, it covers the fundamentals, evaluation measures, and challenges of supervised and unsupervised learning methods. Both feature extraction and supervised learning are discussed as they apply to seizure-related patterns in epilepsy patients. Other specific disorders are also examined with regard to the value of data mining for refining clinical diagnoses, including depression and recurring migraines. The diagnosis and grading of the world’s fourth most serious health threat, depression, and analysis of acoustic properties that can distinguish depressed speech from normal are also described. Although a migraine is a complex neurological disorder, the text demonstrates how metabonomics can be effectively applied to clinical practice. The authors review alignment-based clustering approaches, techniques for automatic analysis of biofilm images, and applications of medical text mining, including text classification applied to medical reports. The identification and classification of two life-threatening heart abnormalities, arrhythmia and ischemia, are addressed, and a unique segmentation method for mining a 3-D imaging biomarker, exemplified by evaluation of osteoarthritis, is also presented. Given the widespread deployment of complex biomedical systems, the authors discuss system-engineering principles in a proposal for a design of reliable systems. This comprehensive volume demonstrates the broad scope of uses for data mining and includes detailed strategies and methodologies for analyzing data from biomedical images, signals, and systems.

Biomedical Informatics for Cancer Research

Author: Michael F. Ochs
Publisher: Springer Science & Business Media
ISBN: 1441957146
Format: PDF, Mobi
Download Now
view, showing that multiple molecular pathways must be affected for cancer to develop, but with different specific proteins in each pathway mutated or differentially expressed in a given tumor (The Cancer Genome Atlas Research Network 2008; Parsons et al. 2008). Different studies demonstrated that while widespread mutations exist in cancer, not all mutations drive cancer development (Lin et al. 2007). This suggests a need to target only a deleterious subset of aberrant proteins, since any tre- ment must aim to improve health to justify its potential side effects. Treatment for cancer must become highly individualized, focusing on the specific aberrant driver proteins in an individual. This drives a need for informatics in cancer far beyond the need in other diseases. For instance, routine treatment with statins has become widespread for minimizing heart disease, with most patients responding to standard doses (Wilt et al. 2004). In contrast, standard treatment for cancer must become tailored to the molecular phenotype of an individual tumor, with each patient receiving a different combination of therapeutics aimed at the specific aberrant proteins driving the cancer. Tracking the aberrations that drive cancers, identifying biomarkers unique to each individual for molecular-level di- nosis and treatment response, monitoring adverse events and complex dosing schedules, and providing annotated molecular data for ongoing research to improve treatments comprise a major biomedical informatics need.

Health Informatics Meets EHealth

Author: G. Schreier
Publisher: IOS Press
ISBN: 1614998582
Format: PDF, Kindle
Download Now
Biomedical engineering and health informatics are closely related to each other, and it is often difficult to tell where one ends and the other begins, but ICT systems in healthcare and biomedical systems and devices are already becoming increasingly interconnected, and share the common entity of data. This is something which is set to become even more prevalent in future, and will complete the chain and flow of information from the sensor, via processing, to the actuator, which may be anyone or anything from a human healthcare professional to a robot. Methods for automating the processing of information, such as signal processing, machine learning, predictive analytics and decision support, are increasingly important for providing actionable information and supporting personalized and preventive healthcare protocols in both biomedical and digital healthcare systems and applications. This book of proceedings presents 50 papers from the 12th eHealth conference, eHealth2018, held in Vienna, Austria, in May 2018. The theme of this year’s conference is Biomedical Meets eHealth – From Sensors to Decisions, and the papers included here cover a wide range of topics from the field of eHealth. The book will be of interest to all those working to design and implement healthcare today.

Biomedical Informatics in Translational Research

Author: Hai Hu
Publisher: Artech House
ISBN: 159693039X
Format: PDF, ePub, Docs
Download Now
This trailblazing resource on biomedical informatics provides medical researchers with innovative techniques for integrating and federating data from clinical and molecular studies. This volume helps researchers manage data, expedite their efforts, and make the most of targeted basic research.

Methods in Biomedical Informatics

Author: Indra Neil Sarkar
Publisher: Academic Press
ISBN: 0124016847
Format: PDF, ePub
Download Now
Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.

Biomedical Informatics

Author: Edward H. Shortliffe
Publisher: Springer Science & Business Media
ISBN: 1447144740
Format: PDF
Download Now
The practice of modern medicine and biomedical research requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and carry out investigations. Biomedical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline at the intersection of computer science, decision science, information science, cognitive science, and biomedicine. Now revised and in its third edition, this text meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Authored by leaders in medical informatics and extensively tested in their courses, the chapters in this volume constitute an effective textbook for students of medical informatics and its areas of application. The book is also a useful reference work for individual readers needing to understand the role that computers can play in the provision of clinical services and the pursuit of biological questions. The volume is organized so as first to explain basic concepts and then to illustrate them with specific systems and technologies.