Decomposition Analysis Method in Linear and Nonlinear Differential Equations

Author: Kansari Haldar
Publisher: CRC Press
ISBN: 1498716342
Format: PDF, ePub, Docs
Download Now
A Powerful Methodology for Solving All Types of Differential Equations Decomposition Analysis Method in Linear and Non-Linear Differential Equations explains how the Adomian decomposition method can solve differential equations for the series solutions of fundamental problems in physics, astrophysics, chemistry, biology, medicine, and other scientific areas. This method is advantageous as it simplifies a real problem to reduce it to a mathematically tractable form. The book covers the four classes of the decomposition method: regular/ordinary decomposition, double decomposition, modified decomposition, and asymptotic decomposition. It applies these classes to Laplace and Navier–Stokes equations in Cartesian and polar coordinates for obtaining partial solutions of the equations. Examples of physical and physiological problems, such as tidal waves in a channel, fluids between plates and through tubes, the flow of blood through arteries, and the flow past a wave-shaped wall, demonstrate the applications. Drawing on the author’s extensive research in fluid and gas dynamics, this book shows how the powerful decomposition methodology of Adomian can solve differential equations in a way comparable to any contemporary superfast computer.

Decomposition Methods for Differential Equations

Author: Juergen Geiser
Publisher: CRC Press
ISBN: 9781439810972
Format: PDF, Mobi
Download Now
Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.

Nonlinear Stochastic Operator Equations

Author: George Adomian
Publisher: Academic Press
ISBN: 1483259099
Format: PDF, ePub, Mobi
Download Now
Nonlinear Stochastic Operator Equations deals with realistic solutions of the nonlinear stochastic equations arising from the modeling of frontier problems in many fields of science. This book also discusses a wide class of equations to provide modeling of problems concerning physics, engineering, operations research, systems analysis, biology, medicine. This text discusses operator equations and the decomposition method. This book also explains the limitations, restrictions and assumptions made in differential equations involving stochastic process coefficients (the stochastic operator case), which yield results very different from the needs of the actual physical problem. Real-world application of mathematics to actual physical problems, requires making a reasonable model that is both realistic and solvable. The decomposition approach or model is an approximation method to solve a wide range of problems. This book explains an inherent feature of real systems—known as nonlinear behavior—that occurs frequently in nuclear reactors, in physiological systems, or in cellular growth. This text also discusses stochastic operator equations with linear boundary conditions. This book is intended for students with a mathematics background, particularly senior undergraduate and graduate students of advanced mathematics, of the physical or engineering sciences.

Linear and Nonlinear Integral Equations

Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
ISBN: 3642214495
Format: PDF, Docs
Download Now
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Solving Frontier Problems of Physics The Decomposition Method

Author: G. Adomian
Publisher: Springer
ISBN: 079232644X
Format: PDF, ePub, Mobi
Download Now
The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations.

Domain Decomposition Methods in Science and Engineering XIX

Author: Yunqing Huang
Publisher: Springer Science & Business Media
ISBN: 9783642113048
Format: PDF, Mobi
Download Now
These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.

Fourier Analysis and Nonlinear Partial Differential Equations

Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 9783642168307
Format: PDF, Mobi
Download Now
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Homotopy Analysis Method in Nonlinear Differential Equations

Author: Shijun Liao
Publisher: Springer Science & Business Media
ISBN: 3642251323
Format: PDF, Kindle
Download Now
"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Artificial Neural Networks for Engineers and Scientists

Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1351651315
Format: PDF
Download Now
Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.

Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Author: Hans G. Kaper
Publisher: CRC Press
ISBN: 9780585319674
Format: PDF, Mobi
Download Now
Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per