Density Functional Theory

Author: Eberhard Engel
Publisher: Springer Science & Business Media
ISBN: 9783642140907
Format: PDF, ePub, Docs
Download Now
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.

Mathematical Physics in Theoretical Chemistry

Author: S. M. Blinder
Publisher: Elsevier
ISBN: 0128137010
Format: PDF, Kindle
Download Now
Mathematical Physics in Theoretical Chemistry deals with important topics in theoretical and computational chemistry. Topics covered include density functional theory, computational methods in biological chemistry, and Hartree-Fock methods. As the second volume in the Developments in Physical & Theoretical Chemistry series, this volume further highlights the major advances and developments in research, also serving as a basis for advanced study. With a multidisciplinary and encompassing structure guided by a highly experienced editor, the series is designed to enable researchers in both academia and industry stay abreast of developments in physical and theoretical chemistry. Brings together the most important aspects and recent advances in theoretical and computational chemistry Covers computational methods for small molecules, density-functional methods, and computational chemistry on personal and quantum computers Presents cutting-edge developments in theoretical and computational chemistry that are applicable to graduate students and research professionals in chemistry, physics, materials science and biochemistry

Fundamentals of Time Dependent Density Functional Theory

Author: Miguel A.L. Marques
Publisher: Springer Science & Business Media
ISBN: 3642235182
Format: PDF
Download Now
There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms—such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. From the reviews of LNP 706: “This is a well structured text, with a common set of notations and a single comprehensive and up-to-date list of references, rather than just a compilation of research articles. Because of its clear organization, the book can be used by novices (basic knowledge of ground-state DFT is assumed) and experienced users of TD-DFT, as well as developers in the field.” (Anna I. Krylov, Journal of the American Chemical Society, Vol. 129 (21), 2007) “This book is a treasure of knowledge and I highly recommend it. Although it is a compilation of chapters written by many different leading researchers involved in development and application of TDDFT, the contributors have taken great care to make sure the book is pedagogically sound and the chapters complement each other [...]. It is highly accessible to any graduate student of chemistry or physics with a solid grounding in many-particle quantum mechanics, wishing to understand both the fundamental theory as well as the exponentially growing number of applications. [...] In any case, no matter what your background is, it is a must-read and an excellent reference to have on your shelf.” Amazon.com, October 15, 2008, David Tempel (Cambridge, MA)

Concepts of Mathematical Physics in Chemistry A Tribute to Frank E Harris

Author:
Publisher: Academic Press
ISBN: 0128028688
Format: PDF, ePub, Docs
Download Now
This volume presents a series of articles concerning current important topics in quantum chemistry. Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology Features detailed reviews written by leading international researchers

Density Functional Theory

Author: David Sholl
Publisher: John Wiley & Sons
ISBN: 1118211049
Format: PDF, ePub, Mobi
Download Now
Demonstrates how anyone in math, science, and engineering canmaster DFT calculations Density functional theory (DFT) is one of the most frequentlyused computational tools for studying and predicting the propertiesof isolated molecules, bulk solids, and material interfaces,including surfaces. Although the theoretical underpinnings of DFTare quite complicated, this book demonstrates that the basicconcepts underlying the calculations are simple enough to beunderstood by anyone with a background in chemistry, physics,engineering, or mathematics. The authors show how the widespreadavailability of powerful DFT codes makes it possible for studentsand researchers to apply this important computational technique toa broad range of fundamental and applied problems. Density Functional Theory: A Practical Introductionoffers a concise, easy-to-follow introduction to the key conceptsand practical applications of DFT, focusing on plane-wave DFT. Theauthors have many years of experience introducing DFT to studentsfrom a variety of backgrounds. The book therefore offers severalfeatures that have proven to be helpful in enabling students tomaster the subject, including: Problem sets in each chapter that give readers the opportunityto test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are usedto solve real-world problems Further readings listed in each chapter enabling readers toinvestigate specific topics in greater depth This text is written at a level suitable for individuals from avariety of scientific, mathematical, and engineering backgrounds.No previous experience working with DFT calculations is needed.

Density Functional Theory

Author: Trygve Helgaker
Publisher: Wiley-Blackwell
ISBN: 9781118941348
Format: PDF, Docs
Download Now
Density–functional theory (DFT) is a computational modelling tool used to describe molecules and materials. Different functions are used to determine the properties of electrons and molecules in solids. It is the most widely used method in electronic structure calculations in chemistry, material sciences and physics. Density–Functional Theory: A Convex Treatment gives an introduction to the more mathematical aspects of density–functional theory, allowing a larger group of theoretical chemists and physicists to obtain a full understanding of the theoretical foundation of DFT. Relevant mathematical apparatus, including functional and convex analysis, are introduced and developed before being applied in the subsequent chapter, allowing readers to develop their foundation of DFT. Recent mathematical developments which allow the simplifications of many original proofs while providing significant new insights, are also presented. Topics covered include: Hohenberg–Kohn theory Vector spaces and linear functionals Convex sets and their separation Lieb constrained–search theory Convex conjugation and duality Grand canonical ensembles Thomas–Fermi theory The adiabatic connection Scaling relations Exercises and detailed solutions can be found throughout the book. Density–Functional Theory: A Convex Treatment will provide a consistent and focused description of the fundamentals of DFT, making the important fundamental facts about DFT more accessible to graduate students in electronic structure theory, researchers in chemistry, physics, and materials science as well as theoretical chemists.

The Fundamentals of Density Functional Theory

Author:
Publisher: Springer Science & Business Media
ISBN: 3322976203
Format: PDF
Download Now
Density functional methods form the basis of a diversified and very active area of present days computational atomic, molecular, solid state and even nuclear physics. A large number of computational physicists use these meth ods merely as a recipe, not reflecting too much upon their logical basis. One also observes, despite of their tremendeous success, a certain reservation in their acceptance on the part of the more theoretically oriented researchers in the above mentioned fields. On the other hand, in the seventies (Thomas Fermi theory) and in the eighties (Hohenberg-Kohn theory), density func tional concepts became subjects of mathematical physics. In 1994 a number of activities took place to celebrate the thirtieth an niversary of Hohenberg-Kohn-Sham theory. I took this an occassion to give lectures on density functional theory to senior students and postgraduates in the winter term of 1994, particularly focusing on the logical basis of the the ory. Preparing these lectures, the impression grew that, although there is a wealth of monographs and reviews in the literature devoted to density func tional theory, the focus is nearly always placed upon extending the practical applications of the theory and on the development of improved approxima tions. The logical foundadion of the theory is found somewhat scattered in the existing literature, and is not always satisfactorily presented. This situation led to the idea to prepare a printed version of the lecture notes, which resulted in the present text.

Julian Schwinger

Author: Yee Jack Ng
Publisher: World Scientific
ISBN: 9789810225322
Format: PDF, ePub, Docs
Download Now
In the post-quantum-mechanics era, few physicists, if any, have matched Julian Schwinger in contributions to and influence on the development of physics. A deep and provocative thinker, Schwinger left his indelible mark on all areas of theoretical physics; an eloquent lecturer and immensely successful mentor, he was gentle, intensely private, and known for being ?modest about everything except his physics?. This book is a collection of talks in memory of him by some of his contemporaries and his former students: A Klein, F Dyson, B DeWitt, W Kohn, D Saxon, P C Martin, K Johnson, S Deser, R Finkelstein, Y J Ng, H Feshbach, L Brown, S Glashow, K A Milton, and C N Yang. From it, one can get a glimpse of Julian Schwinger, the physicist, the teacher, and the man. Altogether, this book is a must for all physicists, physics students, and others who are interested in great legends.

The Fundamentals of Electron Density Density Matrix and Density Functional Theory in Atoms Molecules and the Solid State

Author: N.I. Gidopoulos
Publisher: Springer Science & Business Media
ISBN: 9401704090
Format: PDF, Kindle
Download Now
This volume records the proceedings of a Forum on The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State held at the Coseners' House, Abingdon-on-Thames, Oxon. over the period 31st May - 2nd June, 2002. The forum consisted of 26 oral and poster presentations followed by a discussion structure around questions and comments submitted by the participants (and others who had expressed an interest) in advance of the meeting. Quantum mechanics provides a theoretical foundation for our under standing of the structure and properties of atoms, molecules and the solid state in terms their component particles, electrons and nuclei. (Rel ativistic quantum mechanics is required for molecular systems contain ing heavy atoms.) However, the solution of the equations of quantum mechanics yields a function, a wave function, which depends on the co ordinates, both space and spin, of all of the particles in the system. This functions contains much more information than is required to yield the energy or other property.

Density Functional Theory in Quantum Chemistry

Author: Takao Tsuneda
Publisher: Springer Science & Business Media
ISBN: 4431548254
Format: PDF, ePub, Docs
Download Now
In this book, density functional theory (DFT) is introduced within the overall context of quantum chemistry. DFT has become the most frequently used theory in quantum chemistry calculations. However, thus far, there has been no book on the fundamentals of DFT that uses the terminology and methodology of quantum chemistry, which is familiar to many chemists, including experimentalists. This book first reviews the basic concepts and historical background of quantum chemistry and then explains those of DFT, showing how the latter fits into the bigger picture. Recent interesting topics of DFT in chemistry are also targeted. In particular, the physical meanings of state-of-the-art exchange-correlation functionals and their corrections are described in detail. Owing to its unconventionality, this book is certain to be of great interest not only to chemists but also to solid state physicists.