Design for Embedded Image Processing on FPGAs

Author: Donald G. Bailey
Publisher: John Wiley & Sons
ISBN: 0470828528
Format: PDF, Kindle
Download Now
Dr Donald Bailey starts with introductory material considering the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable gate arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The design process for implementing an image processing algorithm on an FPGA is compared with that for a conventional software implementation, with the key differences highlighted. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage is given of a range of low and intermediate level image processing operations, discussing efficient implementations and how these may vary according to the application. The techniques are illustrated with several example applications or case studies from projects or applications he has been involved with. Issues such as interfacing between the FPGA and peripheral devices are covered briefly, as is designing the system in such a way that it can be more readily debugged and tuned. Provides a bridge between algorithms and hardware Demonstrates how to avoid many of the potential pitfalls Offers practical recommendations and solutions Illustrates several real-world applications and case studies Allows those with software backgrounds to understand efficient hardware implementation Design for Embedded Image Processing on FPGAs is ideal for researchers and engineers in the vision or image processing industry, who are looking at smart sensors, machine vision, and robotic vision, as well as FPGA developers and application engineers. The book can also be used by graduate students studying imaging systems, computer engineering, digital design, circuit design, or computer science. It can also be used as supplementary text for courses in advanced digital design, algorithm and hardware implementation, and digital signal processing and applications. Companion website for the book: www.wiley.com/go/bailey/fpga

Design of Image Processing Embedded Systems Using Multidimensional Data Flow

Author: Joachim Keinert
Publisher: Springer Science & Business Media
ISBN: 9781441971821
Format: PDF, ePub
Download Now
This book presents a new set of embedded system design techniques called multidimensional data flow, which combine the various benefits offered by existing methodologies such as block-based system design, high-level simulation, system analysis and polyhedral optimization. It describes a novel architecture for efficient and flexible high-speed communication in hardware that can be used both in manual and automatic system design and that offers various design alternatives, balancing achievable throughput with required hardware size. This book demonstrates multidimensional data flow by showing its potential for modeling, analysis, and synthesis of complex image processing applications. These applications are presented in terms of their fundamental properties and resulting design constraints. Coverage includes a discussion of how far the latter can be met better by multidimensional data flow than alternative approaches. Based on these results, the book explains the principles of fine-grained system level analysis and high-speed communication synthesis. Additionally, an extensive review of related techniques is given in order to show their relation to multidimensional data flow.

FPGAs World Class Designs

Author: Clive Maxfield
Publisher: Newnes
ISBN: 9780080950808
Format: PDF, Docs
Download Now
All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Clive "Max" Maxfield renowned author, columnist, and editor of PL DesignLine has selected the very best FPGA design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of FPGA design from design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving FPGA design problems and how to successfully apply theory to actual design tasks. The material has been selected for its timelessness as well as for its relevance to contemporary FPGA design issues. Contents Chapter 1 Alternative FPGA Architectures Chapter 2 Design Techniques, Rules, and Guidelines Chapter 3 A VHDL Primer: The Essentials Chapter 4 Modeling Memories Chapter 5 Introduction to Synchronous State Machine Design and Analysis Chapter 6 Embedded Processors Chapter 7 Digital Signal Processing Chapter 8 Basics of Embedded Audio Processing Chapter 9 Basics of Embedded Video and Image Processing Chapter 10 Programming Streaming FPGA Applications Using Block Diagrams In Simulink Chapter 11 Ladder and functional block programming Chapter 12 Timers *Hand-picked content selected by Clive "Max" Maxfield, character, luminary, columnist, and author *Proven best design practices for FPGA development, verification, and low-power *Case histories and design examples get you off and running on your current project

System Level Design from HW SW to Memory for Embedded Systems

Author: Marcelo Götz
Publisher: Springer
ISBN: 3319900234
Format: PDF, Docs
Download Now
This book constitutes the refereed proceedings of the 5th IFIP TC 10 International Embedded Systems Symposium, IESS 2015, held in Foz do Iguaçu, Brazil, in November 2015. The 18 full revised papers presented were carefully reviewed and selected from 25 submissions. The papers present a broad discussion on the design, analysis and verification of embedded and cyber-physical systems including design methodologies, verification, performance analysis, and real-time systems design. They are organized in the following topical sections: cyber-physical systems, system-level design; multi/many-core system design; memory system design; and embedded HW/SW design and applications.

Embedded Systems Design Using the Rabbit 3000 Microprocessor

Author: Kamal Hyder
Publisher: Newnes
ISBN: 0750678720
Format: PDF, ePub
Download Now
The Rabbit 3000 is a popular high-performance microprocessor specifically designed for embedded control, communications, and Ethernet connectivity. This new technical reference book will help designers get the most out of the Rabbit's powerful feature set. The first book on the market to focus exclusively on the Rabbit 3000, it provides detailed coverage of: Rabbit architecture and development environment, interfacing to the external world, networking, Rabbit assembly language, multitasking, debugging, Dynamic C and much more! Authors Kamal Hyder and Bob Perrin are embedded engineers with years of experience and they offer a wealth of design details and "insider" tips and techniques. Extensive embedded design examples are supported by fully tested source code. Whether you're already working with the Rabbit or considering it for a future design, this is one reference you can't be without! * Let the experts teach you how to design embedded systems that efficiently hook up to the Internet using networked core modules * Provides a number of projects and source code using RabbitCore, which will make it easy for the system designer and programmer to get hands-on experience developing networked devices * Accompanying CD-ROM contains useful tools and software for embedded network design

Architecture Aware Optimization Strategies in Real time Image Processing

Author: Chao Li
Publisher: John Wiley & Sons
ISBN: 178630094X
Format: PDF, ePub, Docs
Download Now
In the field of image processing, many applications require real-time execution, particularly those in the domains of medicine, robotics and transmission, to name but a few. Recent technological developments have allowed for the integration of more complex algorithms with large data volume into embedded systems, in turn producing a series of new sophisticated electronic architectures at affordable prices. This book performs an in-depth survey on this topic. It is primarily written for those who are familiar with the basics of image processing and want to implement the target processing design using different electronic platforms for computing acceleration. The authors present techniques and approaches, step by step, through illustrative examples. This book is also suitable for electronics/embedded systems engineers who want to consider image processing applications as sufficient imaging algorithm details are given to facilitate their understanding.

FPGAs for Software Programmers

Author: Dirk Koch
Publisher: Springer
ISBN: 3319264087
Format: PDF, ePub, Docs
Download Now
This book makes powerful Field Programmable Gate Array (FPGA) and reconfigurable technology accessible to software engineers by covering different state-of-the-art high-level synthesis approaches (e.g., OpenCL and several C-to-gates compilers). It introduces FPGA technology, its programming model, and how various applications can be implemented on FPGAs without going through low-level hardware design phases. Readers will get a realistic sense for problems that are suited for FPGAs and how to implement them from a software designer’s point of view. The authors demonstrate that FPGAs and their programming model reflect the needs of stream processing problems much better than traditional CPU or GPU architectures, making them well-suited for a wide variety of systems, from embedded systems performing sensor processing to large setups for Big Data number crunching. This book serves as an invaluable tool for software designers and FPGA design engineers who are interested in high design productivity through behavioural synthesis, domain-specific compilation, and FPGA overlays. Introduces FPGA technology to software developers by giving an overview of FPGA programming models and design tools, as well as various application examples; Provides a holistic analysis of the topic and enables developers to tackle the architectural needs for Big Data processing with FPGAs; Explains the reasons for the energy efficiency and performance benefits of FPGA processing; Provides a user-oriented approach and a sense for where and how to apply FPGA technology.

Digital Video Processing for Engineers

Author: Michael Parker
Publisher: Newnes
ISBN: 0124157602
Format: PDF, ePub
Download Now
Any device or system with imaging functionality requires a digital video processing solution as part of its embedded system design. Engineers need a practical guide to technology basics and design fundamentals that enables them to deliver the video component of complex projects. This book introduces core video processing concepts and standards, and delivers practical how-to guidance for engineers embarking on digital video processing designs using FPGAs. It covers the basic topics of video processing in a pictorial, intuitive manner with minimal use of mathematics. Key outcomes and benefits of this book for users include: understanding the concepts and challenges of modern video systems; architect video systems at a system level; reference design examples to implement your own high definition video processing chain; understand implementation trade-offs in video system designs. Video processing is a must-have skill for engineers working on products and solutions for rapidly growing markets such as video surveillance, video conferencing, medical imaging, military imaging, digital broadcast equipment, displays and countless consumer electronics applications This book is for engineers who need to develop video systems in their designs but who do not have video processing experience. It introduces the fundamental video processing concepts and skills in enough detail to get the job done, supported by reference designs, step-by-step FPGA- examples, core standards and systems architecture maps Written by lead engineers at Altera Corp, a top-three global developer of digital video chip (FPGA) technology

Algorithm Architecture Matching for Signal and Image Processing

Author: Guy Gogniat
Publisher: Springer Science & Business Media
ISBN: 9789048199655
Format: PDF, Docs
Download Now
Advances in signal and image processing together with increasing computing power are bringing mobile technology closer to applications in a variety of domains like automotive, health, telecommunication, multimedia, entertainment and many others. The development of these leading applications, involving a large diversity of algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation. Such a linear design flow is reaching its limits due to intense pressure on design cycle and strict performance constraints. The approach, called Algorithm-Architecture Matching, aims to leverage design flows with a simultaneous study of both algorithmic and architectural issues, taking into account multiple design constraints, as well as algorithm and architecture optimizations, that couldn’t be achieved otherwise if considered separately. Introducing new design methodologies is mandatory when facing the new emerging applications as for example advanced mobile communication or graphics using sub-micron manufacturing technologies or 3D-Integrated Circuits. This diversity forms a driving force for the future evolutions of embedded system designs methodologies. The main expectations from system designers’ point of view are related to methods, tools and architectures supporting application complexity and design cycle reduction. Advanced optimizations are essential to meet design constraints and to enable a wide acceptance of these new technologies. Algorithm-Architecture Matching for Signal and Image Processing presents a collection of selected contributions from both industry and academia, addressing different aspects of Algorithm-Architecture Matching approach ranging from sensors to architectures design. The scope of this book reflects the diversity of potential algorithms, including signal, communication, image, video, 3D-Graphics implemented onto various architectures from FPGA to multiprocessor systems. Several synthesis and resource management techniques leveraging design optimizations are also described and applied to numerous algorithms. Algorithm-Architecture Matching for Signal and Image Processing should be on each designer’s and EDA tool developer’s shelf, as well as on those with an interest in digital system design optimizations dealing with advanced algorithms.