Designing and Building Fuel Cells

Author: Colleen Spiegel
Publisher: McGraw Hill Professional
ISBN: 9780071510639
Format: PDF, ePub
Download Now
Acquire an All-in-One Toolkit for Expertly Designing, Modeling, and Constructing High-Performance Fuel Cells Designing and Building Fuel Cells equips you with a hands-on guide for the design, modeling, and construction of fuel cells that perform as well or better than some of the best fuel cells on the market today. Filled with over 120 illustrations and schematics of fuel cells and components, this “one-stop” guide covers fuel cell applications...fuels and the hydrogen economy...fuel cell chemistry, thermodynamics, and electrochemistry...fuel cell modeling, materials, and system design...fuel types, delivery, and processing...fuel cell operating conditions...fuel cell characterization...and much more. Authoritative and practical, Designing and Building Fuel Cells features: Complete information on stack design The latest fuel cell modeling techniques Guidance on cutting-edge materials and components Expert accounts of fuel cell types, processing, and optimization A step-by-step example for constructing a fuel cell Inside This State-of-the-Art Fuel Cell Sourcebook Introduction • Fuel Cell Applications • Fuel Cells and the Hydrogen Economy • Basic Fuel Cell Chemistry and Thermodynamics • Fuel Cell Electrochemistry • Fuel Cell Charge Transport • Fuel Cell Mass Transport • Fuel Cell Heat Transport • Fuel Cell Modeling • Fuel Cell Materials • Fuel Cell Stack Components and Materials • Fuel Cell Stack Design • Fuel Cell System Design • Fuel Types, Delivery, and Processing • Fuel Cell Operating Conditions • Fuel Cell Characterization

PEM Fuel Cell Modeling and Simulation Using Matlab

Author: Colleen Spiegel
Publisher: Elsevier
ISBN: 9780080559018
Format: PDF, Mobi
Download Now
Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations

Fuel Cells

Author: Shripad T. Revankar
Publisher: CRC Press
ISBN: 1482235412
Format: PDF, ePub, Mobi
Download Now
Fuel Cells: Principles, Design, and Analysis considers the latest advances in fuel cell system development and deployment, and was written with engineering and science students in mind. This book provides readers with the fundamentals of fuel cell operation and design, and incorporates techniques and methods designed to analyze different fuel cell systems. It builds on three main themes: basic principles, analysis, and design. The section on basic principles contains background information on fuel cells, including fundamental principles such as electrochemistry, thermodynamics, and kinetics of fuel cell reactions as well as mass and heat transfer in fuel cells. The section on design explores important characteristics associated with various fuel cell components, electrodes, electrocatalysts, and electrolytes, while the section on analysis examines phenomena characterization and modeling both at the component and system levels. Includes objectives and a summary in each chapter Presents examples and problems demonstrating theory/principle applications Provides case studies on fuel cell analysis Contains mathematical methods including numerical methods and MATLAB® Simulink® techniques Offers references and material for further reading Fuel Cells: Principles, Design, and Analysis presents the basic principles, examples, and models essential in the design and optimization of fuel cell systems. Based on more than ten years of the authors’ teaching experience, this text is an ideal resource for junior- to senior-level undergraduate students and for graduate students pursuing advanced fuel cell research and study.

Fuel Cell Fundamentals

Author: Ryan O'Hayre
Publisher: John Wiley & Sons
ISBN: 1119113806
Format: PDF, ePub, Mobi
Download Now
A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions and mathematical problems reinforce the material learned. Fuel cells produce more electricity than batteries or combustion engines, with far fewer emissions. This book is the essential introduction to the technology that makes this possible, and the physical processes behind this cost-saving and environmentally friendly energy source. Understand the basic principles of fuel cell physics Compare the applications, performance, and costs of different systems Master the calculations associated with the latest fuel cell technology Learn the considerations involved in system selection and design As more and more nations turn to fuel cell commercialization amidst advancing technology and dropping deployment costs, global stationary fuel cell revenue is expected to grow from $1.4 billion to $40.0 billion by 2022. The sector is forecasted to explode, and there will be a tremendous demand for high-level qualified workers with advanced skills and knowledge of fuel cell technology. Fuel Cell Fundamentals is the essential first step toward joining the new energy revolution.

Hydrogen Fuel

Author: Ram B. Gupta
Publisher: CRC Press
ISBN: 9781420045772
Format: PDF, Kindle
Download Now
From Methane to Hydrogen—Making the Switch to a Cleaner Fuel Source The world’s overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next great fuel source. All of the Key Aspects of Hydrogen Fuel Hydrogen Fuel: Production, Transport, and Storage describes various aspects of hydrogen fuel, including production from both renewable and nonrenewable sources, purification, storage, transport, safety, codes, and carbon dioxide sequestration. The book examines the unique properties and uses of the hydrogen molecule, its ability to be produced from numerous energy sources, and its separation and purification. It explains how to transport hydrogen using pipelines and tankers, and how to store it using compressed tanks, metal hydrides, carbon adsorbents, and chemical hydrides. The expert contributors also discuss codes and standards, monitoring techniques, and safety designs. The Path to a Cleaner World and Energy Independence Focusing on a clean, economical alternative to nonrenewable energy, this volume provides the latest information on the hydrogen fuel economy.

Hydrogen and Fuel Cells

Author: Rebecca L. Busby
Publisher: PennWell Books
ISBN: 9781593700430
Format: PDF, Mobi
Download Now
&Quot;Hydrogen and Fuel Cells: A Comprehensive Guide explains in straightforward language why hydrogen has emerged as an essential area for research and technology development worldwide. This fascinating new book by Rebecca L. Busby explores the forces driving the market for hydrogen-powered fuel cells, as well as the technical and economic barriers that could detail a transition toward hydrogen energy systems. The book reviews hydrogen's history and discusses current and future applications for hydrogen fuel cells, as well as methods of producing, transporting, and storing hydrogen."--BOOK JACKET.

Fuel Cells

Author: Supramaniam Srinivasan
Publisher: Springer Science & Business Media
ISBN: 0387251162
Format: PDF, ePub, Mobi
Download Now
This concise sourcebook of the electrochemical, engineering and economic principles involved in the development and commercialization of fuel cells offers a thorough review of applications and techno-economic assessment of fuel cell technologies, plus in-depth discussion of conventional and novel approaches for generating energy. Parts I and II explain basic and applied electrochemistry relevant to an understanding of fuel cells. Part III covers engineering and technology aspects. The book is useful for undergraduate and graduate students and scientists interested in fuel cells. Unlike any other current book on fuel cells, each chapter includes problems based on the discussions in the text.

Fuel Cell Projects for the Evil Genius

Author: Gavin D J Harper
Publisher: McGraw Hill Professional
ISBN: 0071595767
Format: PDF
Download Now
FUEL YOUR EVIL URGES WHILE YOU BUILD GREEN ENERGY PROJECTS! Go green as you amass power! Fuel Cell Projects for the Evil Genius broadens your knowledge of this important, rapidly developing technology and shows you how to build practical, environmentally conscious projects using the three most popular and widely accessible fuel cells! In Fuel Cell Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to conduct practical experiments and build energizing fuel cell projects. You'll find complete, easy-to-follow plans that feature clear diagrams and schematics, as well as: Instructions for fascinating sustainable energy projects, complete with 180 how-to illustrations Explanations of how fuel cells work and why the hydrogen economy will impact our lives in the near future Frustration-factor removal-all the needed parts are listed, along with sources Science fair project ideas that are on the cutting edge of the latest technological developments Fuel Cell Projects for the Evil Genius gives you complete plans, instructions, parts lists, and sources to: Understand how hydrogen could meet our energy needs in a post-carbon economy Build a fuel cell car to race against your friends Build an intelligent fuel cell car which autonomously drives Build a simple fuel cell using adhesive bandages Hydrogen fuel your iPod Have a hydrogen barbecue-cook your food with zero carbon emissions! Discover how the amounts of hydrogen supplied to fuel cells affect the amounts of electricity produced And much more!

PEM Fuel Cell Modelling and Simulation using MATLAB

Author: Colleen Spiegel
Publisher: Academic Press
ISBN: 0128094826
Format: PDF, ePub, Mobi
Download Now
The second edition of PEM Fuel Cell Modeling and Simulation provides design engineers and researchers with a valuable and completely updated tool for understanding and overcoming barriers to designing and building fuel cells and fuel cell systems. Starting from the basic concept of a fuel cell, this book presents tools for creating new designs and optimizing their performance. It provides information on how to test components and verify designs in the development phase, saving both time and money. Also included are design and modelling tips for fuel cell components such as exchange structure, catalyst layers, gas diffusion and fuel distribution structures, as well as for fuel cell stacks and fuel cell plants. MATLAB® and FEMLAB codes for polymer electrolyte, direct methanol and solid oxide fuel cells are made available, covering types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. Chapters have been updated and/or expanded in this new edition. New sections have been added to bring more details on topics like degradation in the proton exchange membrane and the catalyst layer, effect of compression of the gas diffusion layer, hydrogen and oxygen crossover modeling, transient behavior modeling, fuel cell modeling assumptions and limitations, fuel cell systems design for vehicles and buildings. It is an indispensable reference for all those involved in fuel cell modeling, especially engineers involved in planning and simulating fuel cell systems or fuel cell integration into energy systems, energy researchers interested in modeling all aspects of fuel cells, from individual components to entire systems, and graduate students entering this field. This new edition has been updated to include the most current knowledge in the field, and its content has been expanded to cover several new topics, such as degradation in the proton exchange membrane and the catalyst layer, effect of compression of the gas diffusion layer, hydrogen and oxygen crossover modeling, transient behavior modeling, fuel cell modeling assumptions and limitations, fuel cell systems design for vehicles and buildings Includes MATLAB® and FEMLAB modelling codes applicable for polymer electrolyte, direct methanol and solid oxide fuel cells Translates basic phenomena into mathematical equations

Lightweight Electric Hybrid Vehicle Design

Author: John Fenton
Publisher: Elsevier
ISBN: 0080535518
Format: PDF
Download Now
Lightweight Electric/Hybrid Vehicle Design, covers the particular automotive design approach required for hybrid/electrical drive vehicles. There is currently huge investment world-wide in electric vehicle propulsion, driven by concern for pollution control and depleting oil resources. The radically different design demands of these new vehicles requires a completely new approach that is covered comprehensively in this book. The book explores the rather dramatic departures in structural configuration necessary for purpose-designed electric vehicle including weight removal in the mechanical systems. It also provides a comprehensive review of the design process in the electric hybrid drive and energy storage systems. Ideal for automotive engineering students and professionals Lightweight Electric/Hybrid Vehicle Design provides a complete introduction to this important new sector of the industry. comprehensive coverage of all design aspects of electric/hybrid cars in a single volume packed with case studies and applications in-depth treatment written in a text book style (rather than a theoretical specialist text style)