Differential Equations

Author: A. C. King
Publisher: Cambridge University Press
ISBN: 9780521016872
Format: PDF
Download Now
For students taking second courses; the subject is central and required at second year and above.

Differential Equations Linear Nonlinear Ordinary Partial

Author: King
Publisher:
ISBN: 9780521670456
Format: PDF, Mobi
Download Now
Finding and interpreting the solutions of differential equations is a central and essential part of applied mathematics. This book aims to enable the reader to develop the required skills needed for a thorough understanding of the subject. The authors focus on the business of constructing solutions analytically, and interpreting their meaning, using rigorous analysis where needed. MATLAB is used extensively to illustrate the material. There are many worked examples based on interesting and unusual real world problems. A large selection of exercises is provided, including several lengthier projects, some of which involve the use of MATLAB. The coverage is broad, ranging from basic second-order ODEs and PDEs, through to techniques for nonlinear differential equations, chaos, asymptotics and control theory. This broad coverage, the authors clear presentation and the fact that the book has been thoroughly class-tested will increase its attraction to undergraduates at each stage of their studies.

Nonlinear Partial Differential Equations for Scientists and Engineers

Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 9780817682651
Format: PDF, ePub, Docs
Download Now
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

A Practical Course in Differential Equations and Mathematical Modelling

Author: Nail H. Ibragimov
Publisher: World Scientific
ISBN: 9814291951
Format: PDF, ePub, Mobi
Download Now
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author?s own theoretical developments. The book ? which aims to present new mathematical curricula based on symmetry and invariance principles ? is tailored to develop analytic skills and ?working knowledge? in both classical and Lie?s methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author?s extensive teaching experience at Novosibirsk and Moscow universities in Russia, CollŠge de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.

Introduction to Partial Differential Equations

Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 3319020994
Format: PDF
Download Now
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Analysis II f r Dummies

Author: Zegarelli
Publisher: John Wiley & Sons
ISBN: 3527657983
Format: PDF, Mobi
Download Now
Nach der Analysis ist vor der Analysis. Dies ist das richtige Buch für Sie, wenn es in der Analysis ein wenig mehr sein soll oder auch muss. Mark Zegarelli erklärt Ihnen, was Sie zur infiniten Integration und zu differential- und multivariablen Gleichungen wissen müssen. Er fährt mit Taylorreihe und Substitutionen fort und führt Sie auch in die Dritte Dimension der Analysis; und das ist lange noch nicht alles! Im Ton verbindlich, in der Sache kompetent führt er Ihre Analysiskenntnisse auf eine neue Stufe.

Handbook of First Order Partial Differential Equations

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 9780415272674
Format: PDF, Docs
Download Now
This book contains about 3000 first-order partial differential equations with solutions. New exact solutions to linear and nonlinear equations are included. The text pays special attention to equations of the general form, showing their dependence upon arbitrary functions. At the beginning of each section, basic solution methods for the corresponding types of differential equations are outlined and specific examples are considered. It presents equations and their applications, including differential geometry, nonlinear mechanics, gas dynamics, heat and mass transfer, wave theory and much more. This handbook is an essential reference source for researchers, engineers and students of applied mathematics, mechanics, control theory and the engineering sciences.

Linear Partial Differential Equations for Scientists and Engineers

Author: Tyn Myint-U
Publisher: Springer Science & Business Media
ISBN: 9780817645601
Format: PDF, ePub, Docs
Download Now
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Author: NITA H. SHAH
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120350871
Format: PDF, Kindle
Download Now
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.