Differential Geometry and Kinematics of Continua

Author: John D Clayton
Publisher: World Scientific
ISBN: 9814616052
Format: PDF, Docs
Download Now
This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided. Contents: IntroductionGeometric FundamentalsKinematics of Integrable DeformationGeometry of Anholonomic DeformationKinematics of Anholonomic DeformationList of SymbolsBibliographyIndex Readership: Researchers in mathematical physics and engineering mechanics. Key Features:Presentation of mathematical operations and examples in anholonomic space associated with a multiplicative decomposition (e.g., of the gradient of motion) is more general and comprehensive than any given elsewhere and contains original ideas and new resultsLine-by-line derivations are frequent and exhaustive, to facilitate practice and enable verification of final resultsGeneral analysis is given in generic curvilinear coordinates; particular sections deal with applications and examples in Cartesian, cylindrical, spherical, and convected coordinates. Indicial and direct notations of tensor calculus enable connections with historic and modern literature, respectivelyKeywords:Differential Geometry;Tensor Analysis;Continuum Mechanics;Kinematics;Deformation;Anholonomic Coordinates

Generalized Continua from the Theory to Engineering Applications

Author: Holm Altenbach
Publisher: Springer Science & Business Media
ISBN: 3709113717
Format: PDF, ePub, Docs
Download Now
On the roots of continuum mechanics in differential geometry -- a review.- Cosserat media.- Cosserat-type shells.- Cosserat-type rods.- Micromorphic media.- Electromagnetism and generalized continua.- Computational methods for generalized continua. The need of generalized continua models is coming from practice. Complex material behavior sometimes cannot be presented by the classical Cauchy continua. At present the attention of the scientists in this field is focused on the most recent research items • new models, • application of well-known models to new problems, • micro-macro aspects, • computational effort, and • possibilities to identify the constitutive equations The new research directions are discussed in this volume - from the point of view of modeling and simulation, identification, and numerical methods.

A Geometric Approach to Thermomechanics of Dissipating Continua

Author: Lalao Rakotomanana
Publisher: Springer Science & Business Media
ISBN: 0817681329
Format: PDF, ePub
Download Now
Across the centuries, the development and growth of mathematical concepts have been strongly stimulated by the needs of mechanics. Vector algebra was developed to describe the equilibrium of force systems and originated from Stevin's experiments (1548-1620). Vector analysis was then introduced to study velocity fields and force fields. Classical dynamics required the differential calculus developed by Newton (1687). Nevertheless, the concept of particle acceleration was the starting point for introducing a structured spacetime. Instantaneous velocity involved the set of particle positions in space. Vector algebra theory was not sufficient to compare the different velocities of a particle in the course of time. There was a need to (parallel) transport these velocities at a single point before any vector algebraic operation. The appropriate mathematical structure for this transport was the connection. I The Euclidean connection derived from the metric tensor of the referential body was the only connection used in mechanics for over two centuries. Then, major steps in the evolution of spacetime concepts were made by Einstein in 1905 (special relativity) and 1915 (general relativity) by using Riemannian connection. Slightly later, nonrelativistic spacetime which includes the main features of general relativity I It took about one and a half centuries for connection theory to be accepted as an independent theory in mathematics. Major steps for the connection concept are attributed to a series of findings: Riemann 1854, Christoffel 1869, Ricci 1888, Levi-Civita 1917, WeyJ 1918, Cartan 1923, Eshermann 1950.

Multiscale Biomechanics

Author: Jean-Francois Ganghoffer
Publisher: Elsevier
ISBN: 0081021151
Format: PDF, ePub
Download Now
Multiscale Biomechanics provides new insights on multiscale static and dynamic behavior of both soft and hard biological tissues, including bone, the intervertebral disk, biological membranes and tendons. The physiological aspects of bones and biological membranes are introduced, along with micromechanical models used to compute mechanical response. A modern account of continuum mechanics of growth and remodeling, generalized continuum models to capture internal lengths scales, and dedicated homogenization methods are provided to help the reader with the necessary theoretical foundations. Topics discussed include multiscale methods for fibrous media based on discrete homogenization, generalized continua constitutive models for bone, and a presentation of recent theoretical and numerical advances. In addition, a refresher on continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods is given in separate chapters. Numerical aspects are treated in detail, and simulations are presented to illustrate models. This book is intended for graduate students and researchers in biomechanics interested in the latest research developments, as well as those who wish to gain insight into the field of biomechanics. Provides a clear exposition of multiscale methods for fibrous media based on discrete homogenization and the consideration of generalized continua constitutive models for bone Presents recent theoretical and numerical advances for bone remodeling and growth Includes the necessary theoretical background that is exposed in a clear and self-contained manner Covers continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods

Geometrical Foundations of Continuum Mechanics

Author: Paul Steinmann
Publisher: Springer
ISBN: 3662464608
Format: PDF, Docs
Download Now
This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.

Continuum Mechanics

Author: Myron B. Allen
Publisher: John Wiley & Sons
ISBN: 1118909348
Format: PDF, Docs
Download Now
Presents a self-contained introduction to continuum mechanics that illustrates how many of the important partial differential equations of applied mathematics arise from continuum modeling principles Written as an accessible introduction, Continuum Mechanics: The Birthplace of Mathematical Models provides a comprehensive foundation for mathematical models used in fluid mechanics, solid mechanics, and heat transfer. The book features derivations of commonly used differential equations based on the fundamental continuum mechanical concepts encountered in various fields, such as engineering, physics, and geophysics. The book begins with geometric, algebraic, and analytical foundations before introducing topics in kinematics. The book then addresses balance laws, constitutive relations, and constitutive theory. Finally, the book presents an approach to multiconstituent continua based on mixture theory to illustrate how phenomena, such as diffusion and porous-media flow, obey continuum-mechanical principles. Continuum Mechanics: The Birthplace of Mathematical Models features: Direct vector and tensor notation to minimize the reliance on particular coordinate systems when presenting the theory Terminology that is aligned with standard courses in vector calculus and linear algebra The use of Cartesian coordinates in the examples and problems to provide readers with a familiar setting Over 200 exercises and problems with hints and solutions in an appendix Introductions to constitutive theory and multiconstituent continua, which are distinctive for books at this level Continuum Mechanics: The Birthplace of Mathematical Models is an ideal textbook for courses on continuum mechanics for upper-undergraduate mathematics majors and graduate students in applied mathematics, mechanical engineering, civil engineering, physics, and geophysics. The book is also an excellent reference for professional mathematicians, physical scientists, and engineers.

Tensor Analysis and Continuum Mechanics

Author: Y.R. Talpaert
Publisher: Springer Science & Business Media
ISBN: 9401599882
Format: PDF, Kindle
Download Now
This book is designed for students in engineering, physics and mathematics. The material can be taught from the beginning of the third academic year. It could also be used for self study, given its pedagogical structure and the numerous solved problems which prepare for modem physics and technology. One of the original aspects of this work is the development together of the basic theory of tensors and the foundations of continuum mechanics. Why two books in one? Firstly, Tensor Analysis provides a thorough introduction of intrinsic mathematical entities, called tensors, which is essential for continuum mechanics. This way of proceeding greatly unifies the various subjects. Only some basic knowledge of linear algebra is necessary to start out on the topic of tensors. The essence of the mathematical foundations is introduced in a practical way. Tensor developments are often too abstract, since they are either aimed at algebraists only, or too quickly applied to physicists and engineers. Here a good balance has been found which allows these extremes to be brought closer together. Though the exposition of tensor theory forms a subject in itself, it is viewed not only as an autonomous mathematical discipline, but as a preparation for theories of physics and engineering. More specifically, because this part of the work deals with tensors in general coordinates and not solely in Cartesian coordinates, it will greatly help with many different disciplines such as differential geometry, analytical mechanics, continuum mechanics, special relativity, general relativity, cosmology, electromagnetism, quantum mechanics, etc ..