Discriminants Resultants and Multidimensional Determinants

Author: Israel M. Gelfand
Publisher: Springer Science & Business Media
ISBN: 0817647716
Format: PDF, ePub, Docs
Download Now
"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews

Introduction to Toric Varieties AM 131

Author: William Fulton
Publisher: Princeton University Press
ISBN: 1400882524
Format: PDF, ePub
Download Now
Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

Algorithmic Arithmetic Geometry and Coding Theory

Author: Stéphane Ballet
Publisher: American Mathematical Soc.
ISBN: 1470414619
Format: PDF, ePub, Docs
Download Now
This volume contains the proceedings of the 14th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held June 3-7, 2013, at CIRM, Marseille, France. These international conferences, held every two years, have been a major event in the area of algorithmic and applied arithmetic geometry for more than 20 years. This volume contains 13 original research articles covering geometric error correcting codes, and algorithmic and explicit arithmetic geometry of curves and higher dimensional varieties. Tools used in these articles include classical algebraic geometry of curves, varieties and Jacobians, Suslin homology, Monsky-Washnitzer cohomology, and -functions of modular forms.

Topics on Real and Complex Singularities

Author: Satoshi Koike
Publisher: World Scientific
ISBN: 9814596051
Format: PDF, Kindle
Download Now
A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function attains an extreme value is called a critical point, or a singular point. The purpose of singularity theory is to explore the properties of singular points of functions and mappings. This is a volume on the proceedings of the fourth Japanese–Australian Workshop on Real and Complex Singularities held in Kobe, Japan. It consists of 11 original articles on singularities. Readers will be introduced to some important new notions for characterizations of singularities and several interesting results are delivered. In addition, current approaches to classical topics and state-of-the-art effective computational methods of invariants of singularities are also presented. This volume will be useful not only to the singularity theory specialists but also to general mathematicians. Contents:On the CR Hamiltonian Flows and CR Yamabe Problem (T Akahori)An Example of the Reduction of a Single Ordinary Differential Equation to a System, and the Restricted Fuchsian Relation (K Ando)Fronts of Weighted Cones (T Fukui and M Hasegawa)Involutive Deformations of the Regular Part of a Normal Surface (A Harris and K Miyajima)Connected Components of Regular Fibers of Differentiable Maps (J T Hiratuka and O Saeki)The Reconstruction and Recognition Problems for Homogeneous Hypersurface Singularities (A V Isaev)Openings of Differentiable Map-Germs and Unfoldings (G Ishikawa)Non Concentration of Curvature near Singular Points of Two Variable Analytic Functions (S Koike, T-C Kuo and L Paunescu)Saito Free Divisors in Four Dimensional Affine Space and Reflection Groups of Rank Four (J Sekiguchi)Holonomic Systems of Differential Equations of Rank Two with Singularities along Saito Free Divisors of Simple Type (J Sekiguchi)Parametric Local Cohomology Classes and Tjurina Stratifications for μ-Constant Deformations of Quasi-Homogeneous Singularities (S Tajima) Readership: Mathematicians in singularity theory or in adjacent areas; advanced undergraduates and graduate students in mathematics; non-experts interested in singularity theory and its applications. Key Features:Contains applications of the singularity theory to other mathematical fieldsNew topics in singularity theory, e.g. the relationship between free divisors and holonomic systems, openings of differentiable map-germs, non-concentration of curvatureIncludes articles by prize-winning researchers like Kimio Miyajima and Osamu SaekiKeywords:Singularities;CR Structure;Deformation Theory;Free Divisor;Concentration of Curvature;Holonomic System;Front;Opening

3264 and All That

Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1107017084
Format: PDF, ePub, Docs
Download Now
This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.

Beyond the Quartic Equation

Author: R. Bruce King
Publisher: Springer Science & Business Media
ISBN: 9780817648497
Format: PDF
Download Now
The objective of this book is to present for the first time the complete algorithm for roots of the general quintic equation with enough background information to make the key ideas accessible to non-specialists and even to mathematically oriented readers who are not professional mathematicians. The book includes an initial introductory chapter on group theory and symmetry, Galois theory and Tschirnhausen transformations, and some elementary properties of elliptic function in order to make some of the key ideas more accessible to less sophisticated readers. The book also includes a discussion of the much simpler algorithms for roots of the general quadratic, cubic, and quartic equations before discussing the algorithm for the roots of the general quintic equation. A brief discussion of algorithms for roots of general equations of degrees higher than five is also included. "If you want something truly unusual, try [this book] by R. Bruce King, which revives some fascinating, long-lost ideas relating elliptic functions to polynomial equations." --New Scientist

Introduction to Tropical Geometry

Author: Diane Maclagan
Publisher: American Mathematical Soc.
ISBN: 0821851985
Format: PDF, Mobi
Download Now
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.

Topics from the Theory of Numbers

Author: Emil Grosswald
Publisher: Springer Science & Business Media
ISBN: 0817648380
Format: PDF, ePub, Docs
Download Now
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.

Algebra

Author: I.M. Gelfand
Publisher: Springer Science & Business Media
ISBN: 9780817636777
Format: PDF, Kindle
Download Now
This book is about algebra. This is a very old science and its gems have lost their charm for us through everyday use. We have tried in this book to refresh them for you. The main part of the book is made up of problems. The best way to deal with them is: Solve the problem by yourself - compare your solution with the solution in the book (if it exists) - go to the next problem. However, if you have difficulties solving a problem (and some of them are quite difficult), you may read the hint or start to read the solution. If there is no solution in the book for some problem, you may skip it (it is not heavily used in the sequel) and return to it later. The book is divided into sections devoted to different topics. Some of them are very short, others are rather long. Of course, you know arithmetic pretty well. However, we shall go through it once more, starting with easy things. 2 Exchange of terms in addition Let's add 3 and 5: 3+5=8. And now change the order: 5+3=8. We get the same result. Adding three apples to five apples is the same as adding five apples to three - apples do not disappear and we get eight of them in both cases. 3 Exchange of terms in multiplication Multiplication has a similar property. But let us first agree on notation.