Distributions

Author: J.J. Duistermaat
Publisher: Springer Science & Business Media
ISBN: 9780817646752
Format: PDF, Kindle
Download Now
This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. The book is motivated by many exercises, hints, and solutions that guide the reader along a path requiring only a minimal mathematical background.

Distributions and Operators

Author: Gerd Grubb
Publisher: Springer Science & Business Media
ISBN: 0387848940
Format: PDF, Mobi
Download Now
This book gives an introduction to distribution theory, based on the work of Schwartz and of many other people. It is the first book to present distribution theory as a standard text. Each chapter has been enhanced with many exercises and examples.

Distribution Theory and Transform Analysis

Author: A.H. Zemanian
Publisher: Courier Corporation
ISBN: 0486151948
Format: PDF, ePub
Download Now
Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.

Elements of Distribution Theory

Author: Thomas A. Severini
Publisher: Cambridge University Press
ISBN: 1139446118
Format: PDF, ePub, Docs
Download Now
This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.

Geometric Integration Theory

Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 9780817646790
Format: PDF, Kindle
Download Now
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

Functional Analysis

Author: Michel Willem
Publisher: Springer Science & Business Media
ISBN: 1461470048
Format: PDF
Download Now
The goal of this work is to present the principles of functional analysis in a clear and concise way. The first three chapters of Functional Analysis: Fundamentals and Applications describe the general notions of distance, integral and norm, as well as their relations. The three chapters that follow deal with fundamental examples: Lebesgue spaces, dual spaces and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis, in relation with integration and differentiation. Starting from elementary analysis and introducing relevant recent research, this work is an excellent resource for students in mathematics and applied mathematics.

Kappa Distributions

Author: George Livadiotis
Publisher: Elsevier
ISBN: 0128046392
Format: PDF, ePub, Mobi
Download Now
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)

A Guide to Distribution Theory and Fourier Transforms

Author: Robert S. Strichartz
Publisher: World Scientific
ISBN: 9789812384300
Format: PDF
Download Now
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

A Course in Distribution Theory and Applications

Author: R. S. Pathak
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842650202
Format: PDF, Mobi
Download Now
Suitable for students, teachers and research workers in mathematics, physics and engineering, this book provides the reader with a systematic exposition of the basic ideas and results of distribution theory and its applications to Fourier analysis and partial differential equations without using much sophisticated concepts of functional analysis.