Dynamic Prediction in Clinical Survival Analysis

Author: Hans van Houwelingen
Publisher: CRC Press
ISBN: 1439835438
Format: PDF, ePub, Mobi
Download Now
There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models. Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts: Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox model Part II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violated Part III is dedicated to the use of time-dependent information in dynamic prediction Part IV explores dynamic prediction models for survival data using genomic data Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.

Disease Modelling and Public Health

Author:
Publisher: Elsevier
ISBN: 0444639691
Format: PDF, Mobi
Download Now
Disease Modelling and Public Health, Part A, Volume 36 addresses new challenges in existing and emerging diseases with a variety of comprehensive chapters that cover Infectious Disease Modeling, Bayesian Disease Mapping for Public Health, Real time estimation of the case fatality ratio and risk factor of death, Alternative Sampling Designs for Time-To-Event Data with Applications to Biomarker Discovery in Alzheimer's Disease, Dynamic risk prediction for cardiovascular disease: An illustration using the ARIC Study, Theoretical advances in type 2 diabetes, Finite Mixture Models in Biostatistics, and Models of Individual and Collective Behavior for Public Health Epidemiology. As a two part volume, the series covers an extensive range of techniques in the field. It present a vital resource for statisticians who need to access a number of different methods for assessing epidemic spread in population, or in formulating public health policy. Presents a comprehensive, two-part volume written by leading subject experts Provides a unique breadth and depth of content coverage Addresses the most cutting-edge developments in the field Includes chapters on Ebola and the Zika virus; topics which have grown in prominence and scholarly output

Predictive Statistics

Author: Bertrand S. Clarke
Publisher: Cambridge University Press
ISBN: 1108594204
Format: PDF, ePub, Docs
Download Now
All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Format: PDF, ePub
Download Now
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Computational Social Network Analysis

Author: Kai Subel
Publisher: GRIN Verlag
ISBN: 3640733061
Format: PDF, Kindle
Download Now
Studienarbeit aus dem Jahr 2010 im Fachbereich Informatik - Internet, neue Technologien, Universität Hamburg, Sprache: Deutsch, Abstract: Diese Ausarbeitung befasst sich mit dem Thema Computational Soical Network Analysis. Ziel ist es, dem Leser einen Einblick in diese Thematik zu verschaffen. Dabei werden Hintergründe, anwendbare Methoden und Tools vorgestellt, die hierbei Verwendung finden. Zunächst wird dabei näher auf den Hintergrund, also warum dieses Gebiet als Forschungsgegenstand so interessant ist, eingegangen. Anschließend werden verschiedene Aspekte, die man im Rahmen der Analyse sozialer Netzwerke untersuchen kann benannt. In diesem Zusammenhang werden auch zwei verschiedene Kategorien zur formalen Analyse benannt. Zur Verdeutlichung wird die Verwendung dieser am Ende des Kapitels auch noch einmal anhand eines Praxisbeispiels gezeigt. Das nächste Kapitel befasst sich mit der Fragstellung, wie Schlüsselfiguren in Netzwerken ermittelt werden können und was für Rollen diese spielen. Dabei werden auch die verschiedenen Arten von Schlüsselfiguren benannt. Eine weitere zentrale Rolle in der Analyse sozialer Netzwerke nehmen Gruppen ein. Die Bedeutung von Gruppen und wie man sie ermitteln kann wird im nächsten Kapitel erläutert. Aufbauend auf den Gruppen sollen Interaktionen innerhalb von Netzwerken untersucht werden. Hierfür werden zunächst die nötigen Werkzeuge, wie die SCAN oder DISSECT Methode vorgestellt und anschließend die Einsatzgebiete anhand von Beispielen verdeutlicht. Im 7. Kapitel wird eine eLearning Plattform näher betrachtet. Hierbei werden zunächst die Eigenschaften und Besonderheiten von eLearning Plattformen beschrieben und anschießend anhand eines Praxisbeispiels verschiedene Methoden zur Analyse sozialer Netzwerke angewendet.

E Branding Strategien

Author: Hans-Christian Riekhof
Publisher: Springer-Verlag
ISBN: 3322890597
Format: PDF, ePub, Mobi
Download Now
Orientierung im Internet bieten Marken, zu denen der Verbraucher ein Vertrauensverhältnis aufgebaut hat. Daher ist es für alle Unternehmen, die im Internet agieren, wichtig, für ihre E-Commerce-Strategien eine klare E-Brand-Strategie zu entwickeln. Dieses Buch stellt praxiserprobte Werkzeuge vor und beschreibt Methoden der Erfolgskontrolle. Mit vielen Praxisbeispielen.

Einf hrung in die Extragalaktische Astronomie und Kosmologie

Author: Peter Schneider
Publisher: Springer-Verlag
ISBN: 3540305890
Format: PDF, Docs
Download Now
In diesem kompetent geschriebenen Lehrbuch wird, ausgehend von der Beschreibung unserer Milchstraße, die Astronomie der Galaxien und ihrer großräumigen Verteilung eingehend dargestellt und schließlich im kosmologischen Kontext diskutiert. Aufbauend auf eine Einführung in die moderne beobachtende und theoretische Kosmologie wird die Entstehung von Strukturen und astronomischen Objekten im frühen Universum besprochen.

konometrische Analyse von Zeitreihen

Author: Andrew C. Harvey
Publisher: De Gruyter Oldenbourg
ISBN: 9783486228335
Format: PDF, Mobi
Download Now
Lehrbuch über die statistischen Aspekte ökonomischer Modellbildung. Zudem ein international als hervorragend geschätztes Buch.