Dynamics of Heterogeneous Materials

Author: Vitali Nesterenko
Publisher: Springer Science & Business Media
ISBN: 1475735243
Format: PDF, Docs
Download Now
This monograph deals with the behavior of essentially nonlinear heterogeneous materials in processes occurring under intense dynamic loading, where microstructural effects play the main role. This book is not an introduction to the dynamic behavior of materials, and general information available in other books is not included. The material herein is presented in a form I hope will make it useful not only for researchers working in related areas, but also for graduate students. I used it successfully to teach a course on the dynamic behavior of materials at the University of California, San Diego. Another course well suited to the topic may be nonlinear wave dynamics in solids, especially the part on strongly nonlinear waves. About 100 problems presented in the book at the end of each chapter will help the reader to develop a deeper understanding of the subject. I tried to follow a few rules in writing this book: (1) To focus on strongly nonlinear phenomena where there is no small parameter with respect to the amplitude of disturbance, including solitons, shock waves, and localized shear. (2) To take into account phenomena sensitive to materials structure, where typical space scale of material parameters (particle size, cell size) are presented in the models or are variable in experimental research.

Static Compression of Energetic Materials

Author: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
Format: PDF
Download Now
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Shock Wave Reflection Phenomena

Author: Gabi Ben-Dor
Publisher: Springer Science & Business Media
ISBN: 3540713824
Format: PDF, ePub, Mobi
Download Now
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.

Fundamentals of Shock Wave Propagation in Solids

Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745688
Format: PDF
Download Now
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Shock Wave Science and Technology Reference Library Vol 3

Author: Yasuyuki Horie
Publisher: Springer Science & Business Media
ISBN: 3540770801
Format: PDF
Download Now
This book is the second volume of Solids Volumes in theShockWaveScience and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and hi- velocity impact and penetration events. This volume contains four articles. The ?rst two describe the reactive behavior of condensed-phase explosives, and the remaining two discuss the inert, mechanical response of solid materials. The articles are each se- contained, and can be read independently of each other. They o?er a timely reference, for beginners as well as professional scientists and engineers, cov- ing the foundations and the latest progress, and include burgeoning devel- ment as well as challenging unsolved problems. The ?rst chapter, by S. She?eld and R. Engelke, discusses the shock initiation and detonation phenomena of solids explosives. The article is an outgrowth of two previous review articles: “Explosives” in vol. 6 of En- clopedia of Applied Physics (VCH, 1993) and “Initiation and Propagation of Detonation in Condensed-Phase High Explosives” in High-Pressure Shock Compression of Solids III (Springer, 1998). This article is not only an - dated review, but also o?ers a concise heuristic introduction to shock waves and condensed-phase detonation. The authors emphasize the point that d- onation is not an uncontrollable, chaotic event, but that it is an orderly event that is governed by and is describable in terms of the conservation of mass, momentum, energy and certain material-speci?c properties of the explosive.

High Pressure Shock Compression of Solids VI

Author: Yasuyuki Horie
Publisher: Springer Science & Business Media
ISBN: 1461300134
Format: PDF, ePub
Download Now
Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: - What are the experimental data on mesoscale effects of shocks, and what are the implications? - Can one formulate new mesoscale theories of shock dynamics? - How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture? - What new computational models will be needed for investigating mesoscale shocks?

High Pressure Shock Compression of Solids III

Author: Lee W. Davison
Publisher: Springer Science & Business Media
ISBN: 9780387982922
Format: PDF, ePub
Download Now
Developments in experimental methods are providing an increasingly detailed understanding of shock compression phenomena on the bulk, intermediate, and molecular scales. This third volume in a series of reviews of the curent state of knowledge covers several diverse areas. The first group of chapters addresses fundamental physical and chemical aspects of the response of condensed matter to shock comression: equations of state, molecular-dynamic analysis, deformation of materials, spectroscopic methods. Two further chapters focus on a particular group of materials: ceramics. Another chapter discusses shock-induced reaction of condensed-phase explosives. And a final pair of chapters considers shock phenomena at low stresses from the point of view of continuum mechanics.

High Pressure Shock Compression of Solids IV

Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 1461222923
Format: PDF
Download Now
While much is known about the effects of shock compression on monolithic materials, the unusual physical and chemical processes that take place when a porous medium is shocked have hardly been studied until now. Here, leading researchers in condensed matter physics, physical chemistry, metallurgy, mechanics, and materials science bridge this gap. The focus is on heterogeneous deformation mechanisms, nonequilibrium thermodynamics, and chemical processes, covering such topics as modelling the complex interplay of thermal, mechanical, and chemical processes; experimental data on pore collapse and their interpretation; and synthesis of new materials through shock-induced chemical reactions. By presenting not only the most recent results, but also the open questions that remain, these essays convey the excitement of developing a scientific basis for understanding shock compression.

Shock Waves in Materials Science

Author: Akira B. Sawaoka
Publisher: Springer Science & Business Media
ISBN: 4431682406
Format: PDF, ePub, Mobi
Download Now
In this volume, the shock compression technology of materials is described in parallel with the latest research results and their background. In the past, this type of technology was developed in connection with military techniques by certain particular research organizations. For this reason, researchers of materials in general have had less opportunity to make use of the technology. The conventional technology of shock compression has now been established, and is recognized as being remarkably useful as a means of materials science study. The feasibility of shock compression technology is dealt with in this book, as well as the latest research results for general material scientists. The shock synthesis of ceramics and intermetallic compounds, as well as shock compression behavior, are also described. In contrast to conventional works of this kind, this book describes shock compression studies performed by material scientists.