Dynamics of Mechanical Systems

Author: Harold Josephs
Publisher: CRC Press
ISBN: 1420041924
Format: PDF
Download Now
Mechanical systems are becoming increasingly sophisticated and continually require greater precision, improved reliability, and extended life. To meet the demand for advanced mechanisms and systems, present and future engineers must understand not only the fundamental mechanical components, but also the principles of vibrations, stability, and balance and the use of Newton's laws, Lagrange's equations, and Kane's methods. Dynamics of Mechanical Systems provides a vehicle for mastering all of this. Focusing on the fundamental procedures behind dynamic analyses, the authors take a vector-oriented approach and lead readers methodically from simple concepts and systems through the analysis of complex robotic and bio-systems. A careful presentation that balances theory, methods, and applications gives readers a working knowledge of configuration graphs, Euler parameters, partial velocities and partial angular velocities, generalized speeds and forces, lower body arrays, and Kane's equations. Evolving from more than three decades of teaching upper-level engineering courses, Dynamics of Mechanical Systems enables readers to obtain and refine skills ranging from the ability to perform insightful hand analyses to developing algorithms for numerical/computer analyses. Ultimately, it prepares them to solve real-world problems and make future advances in mechanisms, manipulators, and robotics.

Dynamics of Mechanical Systems

Author: Carl T. F. Ross
Publisher: Elsevier
ISBN: 0857099795
Format: PDF, Mobi
Download Now
Adopting a step by step methodical approach, the book is aimed at first and second year undergraduates and addresses the mathematical difficulties faced by them. Solution manual free from: http://www.mech.port.ac.uk/sdalby/mbm/CTFRSoln.htm Adopts a step-by-step methodical approach in explaining the dynamics of mechanical systems Addresses the mathematical difficulties faced by first and second year undergraduates

Advanced Dynamics of Mechanical Systems

Author: Federico Cheli
Publisher: Springer
ISBN: 3319182005
Format: PDF, Kindle
Download Now
This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation and Energy but will also be useful for professionals. The book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications.

Kinematics and Dynamics of Mechanical Systems

Author: Kevin Russell
Publisher: CRC Press
ISBN: 1498724949
Format: PDF, ePub
Download Now
Effectively Apply the Systems Needed for Kinematic, Static, and Dynamic Analyses and Design A survey of machine dynamics using MATLAB and SimMechanics, Kinematics and Dynamics of Mechanical Systems: Implementation in MATLAB® and SimMechanics® combines the fundamentals of mechanism kinematics, synthesis, statics and dynamics with real-world applications and offers step-by-step instruction on the kinematic, static, and dynamic analyses and synthesis of equation systems. Written for students with no working knowledge of MATLAB and SimMechanics, this book provides a basic understanding of static and dynamic mechanism analysis, moves beyond conventional kinematic concepts—factoring in adaptive programming, 2D and 3D visualization, and simulation, and equips readers with the ability to readily analyze and design mechanical systems. Bridging the gap between theory and application, this book: Introduces the fundamental, kinematic, and mechanical concepts Presents the displacement, velocity and acceleration analysis of the plan and function generation (concepts in a branch of kinematics called synthesis) of planar four-bar mechanisms Explores the static and dynamic force analysis of the planar four-bar, slider-crank, geared five-bar, Watt II and Stephenson III mechanisms Discusses gear and radial cam systems Describes the displacement velocity and acceleration analysis of the spatial RRSS, RSSR and 4R spherical mechanisms Includes the forward and inverse kinematic analysis of industrial robots including the Cartesian, cylindrical, spherical, and articulated and SCARA robots Considers the programmable quantitative methods for kinematic analysis and synthesis Kinematics and Dynamics of Mechanical Systems: Implementation in MATLAB® and SimMechanics® provides an introduction to kinematics, presents the foundational concepts in mechanism design and analysis, and gives readers the ability to effectively implement existing mechanical system designs for a variety of applications.

Mechanical System Dynamics

Author: Friedrich Pfeiffer
Publisher: Springer Science & Business Media
ISBN: 3540794360
Format: PDF, Mobi
Download Now
Mechanics as a fundamental science in Physics and in Engineering deals with interactions of forces resulting in motion and deformation of material bodies. Similar to other sciences Mechanics serves in the world of Physics and in that of Engineering in a di?erent way, in spite of many and increasing inter- pendencies. Machines and mechanisms are for physicists tools for cognition and research, for engineers they are the objectives of research, according to a famous statement of the Frankfurt physicist and biologist Friedrich Dessauer. Physicists apply machines to support their questions to Nature with the goal of new insights into our physical world. Engineers apply physical knowledge to support the realization process of their ideas and their intuition. Physics is an analytical Science searching for answers to questions concerning the world around us. Engineering is a synthetic Science, where the physical and ma- ematical fundamentals play the role of a kind of reinsurance with respect to a really functioning and e?ciently operating machine. Engineering is also an iterative Science resulting in typical long-time evolutions of their products, but also in terms of the relatively short-time developments of improving an existing product or in developing a new one. Every physical or mathematical Science has to face these properties by developing on their side new methods, new practice-proved algorithms up to new fundamentals adaptable to new technological developments. This is as a matter of fact also true for the ?eld of Mechanics.

Dynamics of Non Ideal Mechanical Systems

Author: Livija Cveticanin
Publisher: Springer
ISBN: 3319541692
Format: PDF, Docs
Download Now
In this book the dynamics of the non-ideal oscillatory system, in which the excitation is influenced by the response of the oscillator, is presented. Linear and nonlinear oscillators with one or more degrees of freedom interacting with one or more energy sources are treated. This concerns for example oscillating systems excited by a deformed elastic connection, systems excited by an unbalanced rotating mass, systems of parametrically excited oscillator and an energy source, frictionally self-excited oscillator and an energy source, energy harvesting system, portal frame – non-ideal source system, non-ideal rotor system, planar mechanism – non-ideal source interaction. For the systems the regular and irregular motions are tested. The effect of self-synchronization, chaos and methods for suppressing chaos in non-ideal systems are considered. In the book various types of motion control are suggested. The most important property of the non-ideal system connected with the jump-like transition from a resonant state to a non-resonant one is discussed. The so called ‘Sommerfeld effect’, resonant unstable state and jumping of the system into a new stable state of motion above the resonant region is explained. A mathematical model of the system is solved analytically and numerically. Approximate analytical solving procedures are developed. Besides, simulation of the motion of the non-ideal system is presented. The obtained results are compared with those for the ideal case. A significant difference is evident. The book aims to present the established results and to expand the literature in non-ideal vibrating systems. A further intention of the book is to give predictions of the effects for a system where the interaction between an oscillator and the energy source exist. The book is targeted at engineers and technicians dealing with the problem of source-machine system, but is also written for PhD students and researchers interested in non-linear and non-ideal problems.

Dynamics of Mechanical Systems with Coulomb Friction

Author: Le Xuan Anh
Publisher: Springer Science & Business Media
ISBN: 3540365168
Format: PDF, ePub
Download Now
This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: derivation of the equations of motion, Painleve's paradoxes, tangential impact and dynamic seizure, and frictional self-excited oscillations. In addition to the theoretical results, the book contains a detailed description of experiments that show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering.

System Dynamics for Mechanical Engineers

Author: Matthew Davies
Publisher: Springer
ISBN: 1461492939
Format: PDF, Kindle
Download Now
This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: · Reinforces the connection between the subject matter and engineering reality · Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements · Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high-speed manufacturing equipment, and measurement systems · Incorporates MATLAB® programming examples throughout the text · Incorporates MATLAB® examples that animate the dynamics of systems

Dynamics of Mechanical Systems with Variable Mass

Author: Hans Irschik
Publisher: Springer
ISBN: 3709118093
Format: PDF, Docs
Download Now
The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

System Dynamics and Mechanical Vibrations

Author: Dietmar Findeisen
Publisher: Springer Science & Business Media
ISBN: 3662042053
Format: PDF, Kindle
Download Now
A comprehensive treatment of "linear systems analysis" applied to dynamic systems as an approach to interdisciplinary system design beyond the related area of electrical engineering. The text gives an interpretation of mechanical vibrations based on the theory of dynamic systems, aiming to bridge the gap between existing theoretical methods in different engineering disciplines and to enable advanced students or professionals to model dynamic and vibrating systems with reference to communication and control processes. Emphasizing the theory it presents a balanced coverage of analytical principles and applications to vibrations with regard to mechatronic problems.