Effective Computational Methods for Wave Propagation

Author: Nikolaos A. Kampanis
Publisher: CRC Press
ISBN: 9781420010879
Format: PDF
Download Now
Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable computational methods used to describe wave propagation phenomena in selected areas of physics and technology. Featuring contributions from internationally known experts, the book is divided into four parts. It begins with the simulation of nonlinear dispersive waves from nonlinear optics and the theory and numerical analysis of Boussinesq systems. The next section focuses on computational approaches, including a finite element method and parabolic equation techniques, for mathematical models of underwater sound propagation and scattering. The book then offers a comprehensive introduction to modern numerical methods for time-dependent elastic wave propagation. The final part supplies an overview of high-order, low diffusion numerical methods for complex, compressible flows of aerodynamics. Concentrating on physics and technology, this volume provides the necessary computational methods to effectively tackle the sources of problems that involve some type of wave motion.

Interactive Dynamic System Simulation Second Edition

Author: Granino A. Korn
Publisher: CRC Press
ISBN: 9781439836439
Format: PDF
Download Now
A hands-on tutorial, covering interactive simulation of dynamical systems such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. In practice, simulation experiments are employed for iterative decision-making, whereby programs are run, modified, and run again and again. It is very important to emphasize interactive simulation programming. To this end, the user-friendly Microsoft Windows 95 interface is combined with the DESIRE (Direct Executing Simulation) language. The first chapter introduces dynamical system models and the principles of differential-equation-solving problems. The following chapters provide a tutorial on effective simulation programming, with examples from physics, aerospace, engineering, population dynamics, and physiology. The remaining chapters provide more detailed programming know-how.

Genetic Algorithms and Genetic Programming

Author: Michael Affenzeller
Publisher: CRC Press
ISBN: 9781420011326
Format: PDF, Kindle
Download Now
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development. The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems. Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.

Insights and Innovations in Structural Engineering Mechanics and Computation

Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1317280636
Format: PDF, ePub
Download Now
Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.

Computational Seismology

Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Format: PDF
Download Now
This book is an introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering, and many other fields. The physical problem of elastic wave propagation in 1D serves as a model system with which the various numerical methods are introduced and compared. The theoretical background is presented with substantial graphical material supporting the concepts. The results can be reproduced with the supplementary electronic material provided as python codes embedded in Jupyter notebooks. The book starts with a primer on the physics of elastic wave propagation, and a chapter on the fundamentals of parallel programming, computational grids, mesh generation, and hardware models. The core of the book is the presentation of numerical solutions of the wave equation with six different methods: 1) the finite-difference method; 2) the pseudospectral method (Fourier and Chebyshev); 3) the linear finite-element method; 4) the spectral-element method; 5) the finite-volume method; and 6) the discontinuous Galerkin method. Each chapter contains comprehension questions, theoretical, and programming exercises. The book closes with a discussion of domains of application and criteria for the choice of a specific numerical method, and the presentation of current challenges. Readers are welcome to visit the author's website www.geophysik.lmu.de/Members/igel for more information on his research, projects, publications, and other activities.

Computational Methods in Sciences and Engineering 2003

Author: T E Simos
Publisher: World Scientific
ISBN: 9814485098
Format: PDF, Kindle
Download Now
In the past few decades, many significant insights have been gained into several areas of computational methods in sciences and engineering. New problems and methodologies have appeared in some areas of sciences and engineering. There is always a need in these fields for the advancement of information exchange. The aim of this book is to facilitate the sharing of ideas, problems and methodologies between computational scientists and engineers in several disciplines. Extended abstracts of papers on the recent advances regarding computational methods in sciences and engineering are provided. The book briefly describes new methods in numerical analysis, computational mathematics, computational and theoretical physics, computational and theoretical chemistry, computational biology, computational mechanics, computational engineering, computational medicine, high performance computing, etc. Contents:Components for Time Series Receiver Clock Offset in GPS Solutions (P Abad)Some Numerical Methods for Stiff Problems (J C Butcher)Bifurcation Phenomena in Molecular Vibrational Spectroscopy (S C Farantos)Simulations of Spart in Random Fields (D T Hristopoulos)Electric Properties of Substituted Diacetylenes (P Karamanis & G Maroulis)Data Mining and Cryptology (E C Laskari et al.)A Finite Element Approach for the Dirac Radial Equation (L A A Nikolopoulos)Constraint Based Web Mining (I Petrounias et al.)Axisymmetric Rigid Bodies in Creeping Flow (J Roumeliotis)The Impact of Graphics Calculator on Mathematics Education in Asia (C-Y Suen)On the Systematic Construction of Molecular Basis Sets (S Wilson)and other papers Readership: Researchers and graduate students in any discipline involving scientific computation. Keywords:Numerical Analysis;Computational Mathematics;Computational and Theoretical Physics;Computational Chemistry;Computational Biology;Computational Mechanics;Computational Engineering, Computational Medicine;High Performance Computing

Computational Wave Dynamics

Author: Hitoshi Gotoh
Publisher: World Scientific Publishing Company
ISBN: 9814449725
Format: PDF, Docs
Download Now
This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD). The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods. It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.

Advanced Computational Methods and Experiments in Heat Transfer XII

Author: B. Sundén
Publisher: WIT Press
ISBN: 1845646029
Format: PDF, ePub, Docs
Download Now
Containing papers presented at the twelfth in a series of successful international conferences on Advanced Computational Methods and Experiments in Heat Transfer, this book covers the latest developments in this important field. Heat Transfer plays a major role in emerging application fields such as sustainable development and the reduction of greenhouse gases, as well as micro- and nano-scale structures and bio-engineering. Typical applications include heat exchangers, gas turbine cooling, turbulent combustion and fires, electronics cooling, melting and solidification. The nature of heat transfer problems is complex, involving many different simultaneously occurring mechanisms (e.g., heat conduction, convection, turbulence, thermal radiation. phase change). Their complexity makes it imperative that we develop reliable and accurate computational methods to replace or complement expensive and time-consuming experimental trial and error work. Tremendous advances have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and more powerful computers capable of performing efficient and rapid calculations. Nevertheless, to further progress, it will also be necessary to develop theoretical and predictive computational procedures--both basic and innovative--and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. The book includes such topics as: Heat Transfer in Energy Producing Devices; Heat Transfer Enhancement; Heat Transfer Problems; Natural and Forced Convection and Radiation; Multiphase Flow Heat Transfer; Modelling and Experiments.

Computational Methods for Electromagnetic Phenomena

Author: Wei Cai
Publisher: Cambridge University Press
ISBN: 1107021057
Format: PDF, Docs
Download Now
The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena, from atomistic to continuum scales, this integrated and balanced treatment of mathematical formulations, algorithms and the underlying physics enables us to engage in innovative and advanced interdisciplinary computational research.