Electromagnetic Mechanical and Transport Properties of Composite Materials

Author: Rajinder Pal
Publisher: CRC Press
ISBN: 1420089218
Format: PDF, Docs
Download Now
In the design, processing, and applications of composite materials, a thorough understanding of the physical properties is required. It is important to be able to predict the variations of these properties with the kind, shape, and concentration of filler materials. The currently available books on composite materials often emphasize mechanical properties and focus on classification, applications, and manufacturing. This limited coverage neglects areas that are important to new and emerging applications. For the first time in a single source, this volume provides a systematic, comprehensive, and up-to-date exploration of the electromagnetic (electrical, dielectric, and magnetic), mechanical, thermal, and mass-transport properties of composite materials. The author begins with a brief discussion of the relevance of these properties for designing new materials to meet specific practical requirements. The book is then organized into five parts examining: The electromagnetic properties of composite materials subjected to time-invariant electric and magnetic fields The dynamic electromagnetic properties of composite materials subjected to time-varying electric and magnetic fields The mechanical elastic and viscoelastic properties of composites Heat transfer in composites and thermal properties (thermal conductivity, thermal diffusivity, coefficient of thermal expansion, and thermal emissivity) Mass transfer in composite membranes and composite materials Throughout the book, the analogy between various properties is emphasized. Electromagnetic, Mechanical, and Transport Properties of Composite Materials provides both an introduction to the subject for newcomers and sufficient in-depth coverage for those involved in research. Scientists, engineers, and students from a broad range of fields will find this book a comprehensive source of information.

IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media

Author: Ross C. McPhedran
Publisher: Springer Science & Business Media
ISBN: 0792370384
Format: PDF, Kindle
Download Now
The IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media took place at the University of Sydney from January 18- 22, 1999. It brought together leading researchers from eleven countries for a week-long meeting, with the aim of providing cross-links between the com- nities studying related problems involving elastic and electromagnetic waves in structured materials. After the meeting, participants were invited to submit articles based on their presentations, which were refereed and assembled to constitute these Proceedings. The topics covered here represent areas at the forefront of research intoelastic and electromagnetic waves. They include effect of nonlinearity, diffusion and multiple scattering on waves, as well as asymptotic and numerical techniques. Composite materials are discussed in depth, with example systems ranging fromdusty plasmas to a magneto-elastic microstructured system. Also included are studies of homogenisation, that field which seeks to determine equivalent homogeneous systems which can give equivalent wave properties to structured materials, and inverse problems, in which waves are used as a probe to infer structural details concerning scattering systems. There are also strong groups of papers on the localization of waves by random systems, and photonic and phononic band gap materials. These are being developed by analogue with semiconductors for electrons, and hold out the promise of enabling designers to control the propagation of waves through materials in novel ways. We would like to thank the other members of the Scientific Committee (A.

Random Heterogeneous Materials

Author: Salvatore Torquato
Publisher: Springer Science & Business Media
ISBN: 1475763557
Format: PDF
Download Now
This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.

NDT Data Fusion

Author: Xavier Emanuel Gros
Publisher: Butterworth-Heinemann
ISBN: 0340676485
Format: PDF
Download Now
Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.

Multiple Scattering in Solids

Author: Antonios Gonis
Publisher: Springer Science & Business Media
ISBN: 9780387988535
Format: PDF, Kindle
Download Now
A description of general techniques for solving linear partial differential equations by dividing space into regions to which the equations are independently applied and then assembling a global solution from the partial ones. Intended for researchers and graduates involved in calculations of the electronic structure of materials, this will also be of interest to workers in quantum chemistry, electron microscopy, acoustics, optics, and other fields. The book begins with an intuitive approach to scattering theory and then turns to partial waves and a formal development of multiple scattering theory, with applications to the solid state. The authors then present a variational derivation of the formalism and an augmented version of the theory, concluding with a discussion of the relativistic formalism and a discussion of the Poisson equation. Appendices discuss Green's functions, spherical functions, Moller operators and the Lippmann-Schwinger equation, irregular solutions, and singularities in Green's functions.