Electromagnetic Simulation Using the FDTD Method

Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 1118646630
Format: PDF, ePub, Docs
Download Now
A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Electromagnetic Simulation Using the FDTD Method

Author: Dennis M. Sullivan
Publisher: Wiley-IEEE Press
ISBN: 9781118459393
Format: PDF, ePub, Mobi
Download Now
A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Electromagnetic Simulation Techniques Based on the FDTD Method

Author: W. Yu
Publisher: John Wiley & Sons
ISBN: 0470502037
Format: PDF, Kindle
Download Now
Bridges the gap between FDTD theory and the implementation of practical simulation techniques This is the first publication that guides readers step by step through the implementation of electromagnetic simulation techniques based on FDTD methods. These simulation techniques serve as an essential bridge between FDTD methods and their applications. Moreover, the book helps readers better understand the underlying logic of FDTD methods so that they can design FDTD projects using either commercial electromagnetic software packages or their own codes in order to solve practical engineering problems. The book begins with two chapters that introduce the basic concepts of the 3-D Cartesian FDTD method, followed by discussions of advanced FDTD methods such as conformal techniques, dispersive media, circuit elements, and near-to-far field transformation. Next, the book: Presents basic concepts of parallel processing techniques and systems, including parallel FDTD techniques and systems Explores simulation techniques based on FDTD methods Illustrates practical simulation techniques using engineering applications Introduces advanced simulation techniques Each chapter concludes with references to help readers investigate particular topics in greater depth. Each chapter also includes problem sets that challenge readers to put their new FDTD and simulation skills into practice. By bridging the gap between FDTD theory and practical simulation techniques, this publication is an invaluable guide for students and engineers who need to solve a wide range of design problems in RF, antenna, and microwave engineering.

Quantum Mechanics for Electrical Engineers

Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 0470874090
Format: PDF, ePub
Download Now
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at http://booksupport.wiley.com

Advances in FDTD Computational Electrodynamics

Author: Allen Taflove
Publisher: Artech House
ISBN: 1608071707
Format: PDF, ePub, Docs
Download Now
Advances in photonics and nanotechnology have the potential to revolutionize humanity's ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell's equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.

2 D Electromagnetic Simulation of Passive Microstrip Circuits

Author: Alejandro D. Jimenez
Publisher: CRC Press
ISBN: 9781420087062
Format: PDF
Download Now
Global Demand for Streamlined Design and Computation The explosion of wireless communications has generated a tidal wave of interest and development in computational techniques for electromagnetic simulation as well as the design and analysis of RF and microwave circuits. Learn About Emerging Disciplines, State-of-the-Art Methods 2-D Electromagnetic Simulation of Passive Microstrip Circuits describes this simple procedure in order to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies. The text dissects the latest emerging disciplines and methods of microwave circuit analysis, carefully balancing theory and state-of-the-art experimental concepts to elucidate the process of analyzing high-speed circuits. The author covers the newer techniques – such as the study of signal integrity within circuits, and the use of field map interpretations – employed in powerful electromagnetic simulation analysis methods. But why and how does the intrinsic two-dimensional simulation model used here reduce numerical error? Step-by-Step Simulation Provides Insight and Understanding The author presents the FDTD electromagnetic simulation method, used to reproduce different microstrip test circuits, as well as an explanation of the complementary electrostatic method of moments (MoM). Each reproduces different microstrip test circuits that are physically constructed and then studied, using a natural methodological progression to facilitate understanding. This approach gives readers a solid comprehension and insight into the theory and practical applications of the microstrip scenario, with emphasis on high-speed interconnection elements.

FDTD Modeling of Metamaterials Theory and Applications

Author: Yang Hao
Publisher: Artech House
ISBN: 1596931604
Format: PDF, Mobi
Download Now
Master powerful new modeling tools that let you quantify and represent metamaterial properties with never-before accuracy. This first-of-its-kind book brings you up to speed on breakthrough finite-difference time-domain techniques for modeling metamaterial characteristics and behaviors in electromagnetic systems. This practical resource comes complete with sample FDTD scripts to help you pave the way to new metamaterial applications and advances in antenna, microwave, and optics engineering. You get in-depth coverage of state-of-the-art FDTD modeling techniques and applications for electromagnetic bandgap (EBG) structures, left-handed metamaterials (LHMs), wire medium, metamaterials for optics, and other practical metamaterials. You find steps for computing dispersion diagrams, dealing with material dispersion properties, and verifying the left-handedness. Moreover, this comprehensive volume offers guidance for handling the unique properties possessed by metamaterials, including how to define material parameters, characterize the interface of metamaterial slabs, and quantify their spatial as well as frequency dispersion characteristics. The book also presents conformal and dispersive FDTD modeling of electromagnetic cloaks, perfect lens, and plasmonic waveguides, as well as other novel antenna, microwave, and optical applications. Over 190 illustrations support key topics throughout the book.

Electromagnetic Modeling and Simulation

Author: Levent Sevgi
Publisher: John Wiley & Sons
ISBN: 111887711X
Format: PDF, Mobi
Download Now
This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.