Electronic Structure

Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 9780521782852
Format: PDF, Mobi
Download Now
Important graduate textbook in condensed matter physics by highly regarded physicist.

Electronic Structure Calculations for Solids and Molecules

Author: Jorge Kohanoff
Publisher: Cambridge University Press
ISBN: 1139453483
Format: PDF, Kindle
Download Now
Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.

Time Dependent Density Functional Theory

Author: Carsten A. Ullrich
Publisher: OUP Oxford
ISBN: 0191627445
Format: PDF, Mobi
Download Now
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost. This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a self-contained review of ground-state DFT, followed by a detailed and pedagogical treatment of the formal framework of TDDFT. It is explained how excitation energies can be calculated from linear-response TDDFT. Among the more advanced topics are time-dependent current-density-functional theory, orbital functionals, and many-body theory. Many applications are discussed, including molecular excitations, ultrafast and strong-field phenomena, excitons in solids, van der Waals interactions, nanoscale transport, and molecular dynamics.

Many Body Approach to Electronic Excitations

Author: Friedhelm Bechstedt
Publisher: Springer
ISBN: 366244593X
Format: PDF, ePub
Download Now
The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.

Density Functional Theory

Author: David Sholl
Publisher: John Wiley & Sons
ISBN: 1118211049
Format: PDF, ePub
Download Now
Demonstrates how anyone in math, science, and engineering canmaster DFT calculations Density functional theory (DFT) is one of the most frequentlyused computational tools for studying and predicting the propertiesof isolated molecules, bulk solids, and material interfaces,including surfaces. Although the theoretical underpinnings of DFTare quite complicated, this book demonstrates that the basicconcepts underlying the calculations are simple enough to beunderstood by anyone with a background in chemistry, physics,engineering, or mathematics. The authors show how the widespreadavailability of powerful DFT codes makes it possible for studentsand researchers to apply this important computational technique toa broad range of fundamental and applied problems. Density Functional Theory: A Practical Introductionoffers a concise, easy-to-follow introduction to the key conceptsand practical applications of DFT, focusing on plane-wave DFT. Theauthors have many years of experience introducing DFT to studentsfrom a variety of backgrounds. The book therefore offers severalfeatures that have proven to be helpful in enabling students tomaster the subject, including: Problem sets in each chapter that give readers the opportunityto test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are usedto solve real-world problems Further readings listed in each chapter enabling readers toinvestigate specific topics in greater depth This text is written at a level suitable for individuals from avariety of scientific, mathematical, and engineering backgrounds.No previous experience working with DFT calculations is needed.

Materials Modelling Using Density Functional Theory

Author: Feliciano Giustino
Publisher: Oxford University Press (UK)
ISBN: 0199662444
Format: PDF, Docs
Download Now
This book is an introduction to the modern quantum theory of materials, and primarily addresses seniorundergraduate and first-year graduate students in the physical and chemical sciences, and in materials science and engineering. As advanced materials are becoming ubiquitous in every aspect of our life, the use of quantum mechanics to understand, predict, and design new materials is experiencing a fast-paced growth in academic and industrial research.Following this trend, atomistic materials modelling is becoming an important component of undergraduate science education, however there is still no book on this subject written primarily for anundergraduate readership. The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using quantum mechanics.

First Principles Approaches to Spectroscopic Properties of Complex Materials

Author: Cristiana Di Valentin
Publisher: Springer
ISBN: 3642550681
Format: PDF, ePub, Docs
Download Now
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Computational Methods for Large Systems

Author: Jeffrey R. Reimers
Publisher: John Wiley & Sons
ISBN: 0470934727
Format: PDF
Download Now
While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.

Density Functional Methods in Chemistry

Author: Jan K. Labanowski
Publisher: Springer Science & Business Media
ISBN: 1461231361
Format: PDF, ePub, Docs
Download Now
Predicting molecular structure and energy and explaining the nature of bonding are central goals in quantum chemistry. With this book, the editors assert that the density functional (DF) method satisfies these goals and has come into its own as an advanced method of computational chemistry. The wealth of applications presented in the book, ranging from solid state sys tems and polymers to organic and organo-metallic molecules, metallic clus ters, and biological complexes, prove that DF is becoming a widely used computational tool in chemistry. Progress in the methodology and its imple mentation documented by the contributions in this book demonstrate that DF calculations are both accurate and efficient. In fact, the results of DF calculations may pleasantly surprise many chem ists. Even the simplest approximation of DF, the local spin density method (LSD), yields molecular structures typical of ab initio correlated methods. The next level of theory, the nonlocal spin density method, predicts the energies of molecular processes within a few kcallmol or less. Like the Hartree-Fock (HF) and configuration interaction (CI) methods, the DF method is based only on fundamental physical constants. Therefore, it does not require semiempirical parameters and can be applied to any molecular system and to metallic phases. However, DF's greatest advantage is that it can be applied to much larger systems than those approachable by tradition al ab initio methods, especially when compared with correlated ab initio methods.