Energy Sources

Author: Balasubramanian Viswanathan
Publisher: Newnes
ISBN: 0444563601
Format: PDF
Download Now
Energy Sources: Fundamentals of Chemical Conversion Processes and Applications provides the latest information on energy and the environment, the two main concerns of any progressive society that hopes to be sustainable in the future. Continuous efforts have to be exercised in both these areas by any of the developing communities, as concern over energy conversion continues to evolve due to various ecological imbalances, including climate change. This book provides the fundamentals behind all energy conversion processes, identifies future research needs, and discusses the potential application of each process in a clear-and-concise manner. It is a valuable source for both chemists and chemical engineers who are working to improve current and developing future energy sources, and is a single reference that deals with almost all energy sources for these purposes, reviewing the fundamentals, comparing the various processes, and suggesting future research directions. Compiles, in a single source, all energy conversion processes, enabling easy evaluation and selection Explains the science behind each conversion process and facilitates understanding Contains many illustrations, diagrams, and tables, enabling a clear and comprehensible understanding of the pros and cons of the various processes Includes an exhaustive glossary of all terms used in the conversion processes Presents current status and new direction, thus enabling the planning process for future research needs Provides a concise and comprehensive overview of all energy sources

Polymer based Nanocomposites for Energy and Environmental Applications

Author: Mohammad Jawaid
Publisher: Woodhead Publishing
ISBN: 0081019114
Format: PDF
Download Now
Polymer-Based Nanocomposites for Energy and Environmental Applications provides a comprehensive and updated review of major innovations in the field of polymer-based nanocomposites for energy and environmental applications. It covers properties and applications, including the synthesis of polymer based nanocomposites from different sources and tactics on the efficacy and major challenges associated with successful scale-up fabrication. The chapters provide cutting-edge, up-to-date research findings on the use of polymer based nanocomposites in energy and environmental applications, while also detailing how to achieve material’s characteristics and significant enhancements in physical, chemical, mechanical and thermal properties. It is an essential reference for future research in polymer based nanocomposites as topics such as sustainable, recyclable and eco-friendly methods for highly innovative and applied materials are current topics of importance. Covers a wide range of research on polymer based nanocomposites Provides updates on the most relevant polymer based nanocomposites and their prodigious potential in the fields of energy and the environment Demonstrates systematic approaches and investigations from the design, synthesis, characterization and applications of polymer based nanocomposites Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)

Bioenergy

Author: Yebo Li
Publisher: John Wiley & Sons
ISBN: 1118568370
Format: PDF, Docs
Download Now
The search for altenative, renewable sources of fuel and energy from plants, algae, and waste materials has catalyzed in recent years. With the growing interest in bioenergy development and production there has been increasing demand for a broad ranging introductory text in the field. Bioenergy: Principles and Practices provides an invaluable introduction to the fundamentals of bioenergy feedstocks, processing, and industry. Bioenergy provides readers with an understanding of foundational information on 1st, 2nd, and 3rd generation biofuels. Coverage spans from feedstock production of key energy sources such as grasses, canes, and woody plants through chemical conversion processes and industrial application. Each chapter provides a thorough description of fundamental concepts, definitions of key terms, case studies and practical examples and exercises. Bioenergy: Principles and Practices will be an essential resource for students, bioengineers, chemists, and industry personnel tying key concepts of bioenergy science to valuable real world application.

Electrochemical Power Sources Fundamentals Systems and Applications

Author: Jürgen Garche
Publisher: Elsevier
ISBN: 0444640088
Format: PDF, Docs
Download Now
Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. Presents the relationship between chemical and structure material properties and cell safety Relates cell and battery design to safety as well as system operation parameters to safety Outlines the influences of abuses on safety and the relationship to battery testing Explores the limitations for transport and storage of cells and batteries Includes recycling, disposal and second use of lithium ion batteries

Solar to Chemical Energy Conversion

Author: Masakazu Sugiyama
Publisher: Springer
ISBN: 3319254006
Format: PDF, Docs
Download Now
This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.

Biomass as a Sustainable Energy Source for the Future

Author: Wiebren de Jong
Publisher: John Wiley & Sons
ISBN: 1118304918
Format: PDF
Download Now
Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples

Alternative Energy Sources

Author: Efstathios E. Stathis Michaelides
Publisher: Springer Science & Business Media
ISBN: 3642209505
Format: PDF, Kindle
Download Now
Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years). The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely. The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.

Gasification for Synthetic Fuel Production

Author: R Luque
Publisher: Elsevier
ISBN: 085709808X
Format: PDF, ePub, Mobi
Download Now
Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification Reviews gasification processes for liquid fuel production Outlines the different applications of gasification technology

Biomass to Renewable Energy Processes

Author: Jay Cheng
Publisher: CRC Press
ISBN: 1439882495
Format: PDF, Mobi
Download Now
Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy production, heavily dependent on sugarcane and corn production, is vulnerable to the fluctuation of the feedstock price. New technologies need to be developed to convert abundant biomass such as lignocellulosic materials into energy products in a cost-effective and environmentally friendly manner. An introduction to fundamental principles and practical applications, Biomass to Renewable Energy Processes explains the theories of biological processes, biomass materials and logistics, and conversion technologies for bioenergy products such as biogas, ethanol, butanol, biodiesel, and synthetic gases. The book discusses anaerobic digestion of waste materials for biogas and hydrogen production, bioethanol and biobutanol production from starch and cellulose, and biodiesel production from plant oils. It addresses thermal processes, including gasification and pyrolysis of agricultural residues and woody biomass. The text also covers pretreatment technologies, enzymatic reactions, fermentation, and microbiological metabolisms and pathways. It explores the engineering principles of biomass gasification and pyrolysis and potential end-products. Editor Jay Cheng has assembled contributors from multiple engineering disciplines, reflecting the breadth and depth of the field. These experts discuss the fundamental principles of the processes for bioenergy production, supplying the background needed to understand and develop biofuel technologies. They provide the foundation for future work and development on what can be a clean, green, renewable, and sustainable energy source for years to come.

Sustainable Energy Systems and Applications

Author: Ibrahim Dincer
Publisher: Springer Science & Business Media
ISBN: 0387958606
Format: PDF, ePub, Mobi
Download Now
The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.