Essentials of Modern Materials Science and Engineering

Author: James A. Newell
Publisher: Wiley Global Education
ISBN: 1118311884
Format: PDF, Kindle
Download Now
While other materials science books focus heavily on metals, Newell's Material Science and Engineering offers a unique approach that emphasizes modern materials such as polymers, ceramics, and composites. The book explores the key concepts and fundamentals that are needed to make informed decisions in the field. The importance of economics in decision-making and consideration of the entire life cycle of products are themes that are also integrated throughout the chapters. Engineers will be able to use this as a reference for the materials selection issues that they'll deal with throughout their careers.

Essentials of Materials Science and Engineering

Author: Donald R. Askeland
Publisher: Cengage Learning
ISBN: 1111576858
Format: PDF, Mobi
Download Now
This text provides students with a solid understanding of the relationship between the structure, processing, and properties of materials. Authors Askeland and Wright present the fundamental concepts of atomic structure and the behavior of materials and clearly link them to the materials issues that students will have to deal with when they enter the industry or graduate school (e.g. design of structures, selection of materials, or materials failures). Fundamental concepts are linked to practical applications, emphasizing the necessary basics without overwhelming the students with too much of the underlying chemistry or physics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Essentials of Materials Science and Engineering

Author: Donald R. Askeland
Publisher: Cengage Learning
ISBN: 1285528492
Format: PDF, ePub, Docs
Download Now
This text provides students with a solid understanding of the relationship between the structure, processing, and properties of materials. Authors Askeland and Wright present the fundamental concepts of atomic structure and the behavior of materials and clearly link them to the materials issues that students will have to deal with when they enter the industry or graduate school (e.g. design of structures, selection of materials, or materials failures). Fundamental concepts are linked to practical applications, emphasizing the necessary basics without overwhelming the students with too much of the underlying chemistry or physics. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Materials Science and Engineering of Carbon

Author: Michio Inagaki
Publisher: Butterworth-Heinemann
ISBN: 0128054689
Format: PDF, Kindle
Download Now
Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. Focuses on characterization techniques for carbon materials Authored by experts who are considered specialists in their respective techniques Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials

Informatics for Materials Science and Engineering

Author: Krishna Rajan
Publisher: Butterworth-Heinemann
ISBN: 012394614X
Format: PDF, ePub, Mobi
Download Now
Materials informatics: a ‘hot topic’ area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems

MATERIALS SCIENCE AND ENGINEERING PROBLEMS WITH SOLUTIONS

Author: SHETTY, M.N.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120351096
Format: PDF, ePub
Download Now
This book, with analytical solutions to 260 select problems, is primarily designed for the second year core course on materials science. The treatment of the book reflects the author’s experience of teaching this course comprehensively at IIT-Kanpur for a number of years to the students of engineering and 5-year integrated disciplines. The problems have been categorised into five sections covering a wide range of solid state properties. Section 1 deals with the dual representation of a wave and a particle and then comprehensively explains the behaviour of particles within potential barriers. It provides solutions to the problems that how the energy levels of a free atom lead to the formation of energy bands in solids. The statistics of the distribution of particles in different energy states in a solid has been detailed leading to the derivation of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac statistics and their mutual relationships. Quantitative derivation of the Fermi energy has been obtained by considering free electron energy distribution in solids and then considering Fermi–Dirac distribution as a function of temperature. The derivation of the Richardson’s equation and the related work function has been quantitatively dealt with. The phenomenon of tunnelling has been dealt with in terms of quantum mechanics, whereas the band structure and electronic properties of materials are given quantitative treatment by using Fermi–Dirac distribution function. Section 2 deals with the nature of the chemical bonds, types of bonds and their effect on properties, followed by a detailed presentation of crystal structures of some common materials and a discussion on the structures of C60 and carbon nanotubes. Coordination and packing in crystal structures are considered next followed by a detailed X-ray analysis of simple crystal structures, imperfections in crystals, diffusion, phase equilibria, and mechanical behaviour. Section 3 deals with thermal and electrical properties and their mutual relationships. Calculations of Debye frequency, Debye temperature, and Debye specific heat are presented in great detail. A brief section on superconductivity considers both the conventional and the high–TC superconductors. Sections 4 and 5 deal with the magnetic and dielectric materials, considering magnetic properties from the point of view of the band theory of solids. Crystal structures of some common ferrites are given in detail. Similarly, the displacement characteristics in dielectrics are considered from their charge displacements giving rise to some degree of polarization in the materials.

Food Materials Science and Engineering

Author: Bhesh Bhandari
Publisher: John Wiley & Sons
ISBN: 1118373928
Format: PDF, ePub, Mobi
Download Now
Food Materials Science and Engineering covers a comprehensive range of topics in relation to food materials, their properties and characterisation techniques, thus offering a new approach to understanding food production and quality control. The opening chapter will define the scope and application of food materials science, explaining the relationship between raw material structure and processing and quality in the final product. Subsequent chapters will examine the structure of food materials and how they relate to quality, sensory perception, processing attributes and nutrient delivery. The authors also address applications of nanotechnology to food and packaging science. Methods of manufacturing food systems with improved shelf-life and quality attributes will be highlighted in the book.

Fundamentals of Materials Science

Author: Eric J. Mittemeijer
Publisher: Springer Science & Business Media
ISBN: 9783642105005
Format: PDF, Docs
Download Now
This book offers a strong introduction to fundamental concepts on the basis of materials science. It conveys the central issue of materials science, distinguishing it from merely solid state physics and solid state chemistry, namely to develop models that provide the relation between the microstructure and the properties. The book is meant to be used in the beginning of a materials science and engineering study as well as throughout an entire undergraduate and even graduate study as a solid background against which specialized texts can be studied. Topics dealt with are "crystallography", "lattice defects", "microstructural analysis", "phase equilibria and transformations" and "mechanical strength". After the basic chapters the coverage of topics occurs to an extent surpassing what can be offered in a freshman's course. About the author Prof. Mittemeijer is one of the top scientists in materials science, whose perceptiveness and insight have led to important achievements. This book witnesses of his knowledge and panoramic overview and profound understanding of the field. He is a director of the Max Planck Institute for Metals Research in Stuttgart.

Introduction to Computational Materials Science

Author: Richard LeSar
Publisher: Cambridge University Press
ISBN: 1107328144
Format: PDF, ePub, Docs
Download Now
Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Bioinspired Materials Science and Engineering

Author: Guang Yang
Publisher: John Wiley & Sons
ISBN: 1119390346
Format: PDF
Download Now
An authoritative introduction to the science and engineering of bioinspired materials Bioinspired Materials Science and Engineering offers a comprehensive view of the science and engineering of bioinspired materials and includes a discussion of biofabrication approaches and applications of bioinspired materials as they are fed back to nature in the guise of biomaterials. The authors also review some biological compounds and shows how they can be useful in the engineering of bioinspired materials. With contributions from noted experts in the field, this comprehensive resource considers biofabrication, biomacromolecules, and biomaterials. The authors illustrate the bioinspiration process from materials design and conception to application of bioinspired materials. In addition, the text presents the multidisciplinary aspect of the concept, and contains a typical example of how knowledge is acquired from nature, and how in turn this information contributes to biological sciences, with an accent on biomedical applications. This important resource: Offers an introduction to the science and engineering principles for the development of bioinspired materials Includes a summary of recent developments on biotemplated formation of inorganic materials using natural templates Illustrates the fabrication of 3D-tumor invasion models and their potential application in drug assessments Explores electroactive hydrogels based on natural polymers Contains information on turning mechanical properties of protein hydrogels for biomedical applications Written for chemists, biologists, physicists, and engineers, Bioinspired Materials Science and Engineering contains an indispensible resource for an understanding of bioinspired materials science and engineering.