Evolution after Gene Duplication

Author: Katharina Dittmar
Publisher: John Wiley & Sons
ISBN: 1118148096
Format: PDF, ePub, Docs
Download Now
Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, Evolution after Gene Duplication presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as Hox, globins, olfactory receptors and MHC (immune system) A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume extends coverage to include the fate of associated regulatory pathways Taps the significant increase in multi-gene family data that has resulted from comparative genomics Comprehensive coverage that includes opposing theoretical viewpoints, comparative genomics data, theoretical and empirical evidence and the role of bioinformatics in the study of gene duplication This up-to-date overview of theory and mathematical models along with practical examples is suitable for scientists across various levels of biology as well as instructors and graduate students.

Genome Evolution

Author: Axel Meyer
Publisher: Springer Science & Business Media
ISBN: 9401002630
Format: PDF, Mobi
Download Now
In the years since the publication of Susumu Ohno's 1970 landmark book Evolution by gene duplication tremendous advances have been made in molecular biology and especially in genomics. Studies of genome structure and function prerequisite to testing hypotheses of genome evolution were all but impossible until recent methodological advances. This book evaluates newly generated empirical evidence as it pertains to theories of genomic evolutionary patterns and processes. Tests of hypotheses using analyses of complete genomes, interpreted in a phylogenetic context, provide evidence regarding the relative importance of gene duplication. The alternative explanation is that the evolution of regulatory elements that control the expression of and interactions among genes has been a more important force in shaping evolutionary innovation. This collection of papers will be of interest to all academic and industry researchers working in the fields of molecular biology, biotechnology, genomics and genome centers.

Evolution by Gene Duplication

Author: Susumu Ohno
Publisher: Springer Science & Business Media
ISBN: 364286659X
Format: PDF, ePub, Docs
Download Now
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.

Issues in Life Sciences Molecular Biology 2011 Edition

Author:
Publisher: ScholarlyEditions
ISBN: 1464963495
Format: PDF, Mobi
Download Now
Issues in Life Sciences: Molecular Biology / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Life Sciences—Molecular Biology. The editors have built Issues in Life Sciences: Molecular Biology: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Life Sciences—Molecular Biology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Life Sciences: Molecular Biology: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Gene and Protein Evolution

Author: Jean-Nicolas Volff
Publisher: Karger Medical and Scientific Publishers
ISBN: 3805583400
Format: PDF, Docs
Download Now
"Our way of understanding evolution has changed completely with the era of genomics, particularly since the emergence of comparative genomics, a discipline allowing the analysis of complete genomes and biological processes over vast periods of time. In this volume, internationally recognized experts present and discuss an update of the evolutionary processes at the onset of organismal diversification and complexity, and review the mechanisms leading to the acquisition of new traits and functions. Different levels of evolution are considered, from internal modules in genes and proteins to interactomes and biological networks, with integration of the influence of both the genomic environment and the ecological context. Particular emphasis will be given to the origin of novel genes and gene functions as well as to the evolutionary impact of the duplication of genetic information, with several chapters devoted to transposable elements. Providing an excellent update on gene and protein evolution, this book will be appreciated by researchers in biology and medicine, biology teachers and anyone interested in evolution and genomics."--Publisher's description.

Origin and Evolution of New Gene Functions

Author: Manyuan Long
Publisher: Springer Science & Business Media
ISBN: 9401002290
Format: PDF, Kindle
Download Now
Although interest in evolutionary novelties can be that these different mechanisms cooperate in the mak traced back to the time of Darwin, the appreciation ing of new genes. In the second phase of new gene evolution, conventional models of new gene evolution, and systematical experimental pursuit of the origin and evolution of new gene functions did not appear for example by gene duplication, held that the muta until the early years of last decade. Since the 1970s, tions fixed in the early stages of the new genes are Susumu Ohno, Walter Gilbert, and others from the assumed to be neutral or nearly neutral. However, it area of evolutionary genetics have made pioneer ef appears that the force of Darwinian positive selection has been detectably strong from the outset in avail forts to elaborate possibilities for major biological mechanisms, for example, gene duplication and exon able population genetic studies of young genes created through the process of exon recombination. This may shuffling, by which new gene functions could arise. However, the problem of new gene evolution did not account for a common phenomenon in phylogenetic catch significant attention among biologists generally analyses of genes with changed functions: the early even recently. One of the reasons was the lack of ex stages of such genes are usually associated with accel perimental or observational systems for investigating erated substitution rates. Nonetheless, a more general factual details of the 'birth' process of new genes.

The Role of Gene Duplication During the Evolution of Aerobic Fermentation in Yeast

Author: Hong Chen
Publisher:
ISBN:
Format: PDF, ePub, Docs
Download Now
The genetic basis underlying how organisms adapt to different environments and evolve new life style is a central issue of molecular evolution. The evolution of aerobic fermentation in yeasts is one of those good examples. So far the underlying genetic basis of this phenotypic evolution remains unclear. Gene duplication, as a primary source of materials for evolutionary novelties, has long been thought to play an important role in the adaptation of organisms to their environments. It was hypothesized that whole genome duplication (WGD) led to the development of this efficient fermentative life style. However, it remains unclear how the WGD genes are regulated during the switch of energy metabolism, an issue which should be the essence of the "WGD-Fermentation hypothesis". In this study, I first used a genome-wide expression dataset during robust metabolic oscillation in response to oxygen in budding yeast (Tu et al. 2005) to investigate the distribution of WGD genes in metabolic cycle. An enrichment of WGD genes was found underlying the physiological response of S. cerevisiae to oxygen change. Our results provided new evidence for the WGD-Fermentation hypothesis. In the next, I explored in more detail about what were the important WGD genes that contributed greatly to the evolution of aerobic fermentation. Two WGD genes are brought to the front to study this issue due to their importance on regulating energy metabolism. One of the two genes is pyruvate kinase (PYK), and the other is the target of rapamycin (TOR). In both cases, I revealed positive correlations between the copy number of these genes and the strength of aerobic fermentation on a yeast phylogenetic tree, which implies that gene duplication events of PYK and TOR are possible to facilitate the evolution of aerobic fermentation. In the PYK experiment, I found that yeasts with higher capabilities on the allosteric regulation of PYK tend to have higher fermentation abilities. I then assumed that the strengthened allosteric regulation of PYK after gene duplication might be important in the development of fermentation lifestyle in yeast. Further study on T403E mutant which is defect in allosteric regulation on PYK supported this assumption, as T403E mutant showed raised oxidative phosphorylation and decreased fermentation rate compared with the control. In the TOR experiment, I mimicked the TOR gene duplication during yeast history and doubled the TOR gene in a Crabtree-negative yeast K.lactis. I observed that the fermentation ratio in the doubled TOR mutant was significantly increased compared with the control, which supported that TOR gene duplication contributed greatly to the evolution of fermentative life style. In the view of the similar features shared by fermenting yeast and cancer cells on aerobic fermentation, our studies on PYK and TOR may shed lights on the mechanism how the Warburg effect is regulated in tumor cells.

Das egoistische Gen

Author: Richard Dawkins
Publisher: Springer-Verlag
ISBN: 3642553915
Format: PDF, Mobi
Download Now
p”Ein auch heute noch bedeutsamer Klassiker“ Daily Express Sind wir Marionetten unserer Gene? Nach Richard Dawkins ́ vor über 30 Jahren entworfener und heute noch immer provozierender These steuern und dirigieren unsere von Generation zu Generation weitergegebenen Gene uns, um sich selbst zu erhalten. Alle biologischen Organismen dienen somit vor allem dem Überleben und der Unsterblichkeit der Erbanlagen und sind letztlich nur die "Einweg-Behälter" der "egoistischen" Gene. Sind wir Menschen also unserem Gen-Schicksal hilflos ausgeliefert? Dawkins bestreitet dies und macht uns Hoffnung: Seiner Meinung nach sind wir nämlich die einzige Spezies mit der Chance, gegen ihr genetisches Schicksal anzukämpfen.

Issues in Biological Biochemical and Evolutionary Sciences Research 2011 Edition

Author:
Publisher: ScholarlyEditions
ISBN: 1464963703
Format: PDF, Kindle
Download Now
Issues in Biological, Biochemical, and Evolutionary Sciences Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Biological, Biochemical, and Evolutionary Sciences Research. The editors have built Issues in Biological, Biochemical, and Evolutionary Sciences Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Biological, Biochemical, and Evolutionary Sciences Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Biological, Biochemical, and Evolutionary Sciences Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.