Exergy

Author: Silvio de Oliveira Junior
Publisher: Springer Science & Business Media
ISBN: 1447141652
Format: PDF, Docs
Download Now
Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.

Progress in Exergy Energy and the Environment

Author: Ibrahim Dincer
Publisher: Springer
ISBN: 3319046810
Format: PDF, ePub
Download Now
This thorough and highly relevant volume examines exergy, energy and the environment in the context of energy systems and applications and as a potential tool for design, analysis, optimization. It further considers their role in minimizing and/or eliminating environmental impacts and providing for sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered.

Exergy for A Better Environment and Improved Sustainability 2

Author: Fethi Aloui
Publisher: Springer
ISBN: 3319625756
Format: PDF, Mobi
Download Now
This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 2 focuses on applications and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on selected lectures from the Seventh International Exergy, Energy and Environmental Symposium (IEEES7-2015) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency". Applications are included that apply to the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book. Exergy for Better Environment and Sustainablity, Volume 2 will appeal to researchers, students, and professionals within engineering and the renewable energy fields.

Progress in Sustainable Energy Technologies Generating Renewable Energy

Author: Ibrahim Dincer
Publisher: Springer
ISBN: 3319078968
Format: PDF, Mobi
Download Now
This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world’s energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simulations from not only engineering and science, but disciplines as diverse as ecology, education, economics and information technology are included, in order to create a truly holistic vision of the sustainable energy field. The contributions feature coverage of topics including solar and wind energy, biomass and biofuels, waste-to-energy, renewable fuels, geothermal and hydrogen power, efficiency gains in fossil fuels and energy storage technologies including batteries and fuel cells.

Renewable Energy Engineering Solar Wind Biomass Hydrogen and Geothermal Energy Systems

Author: Emmanuel D. Rogdakis
Publisher: Bentham Science Publishers
ISBN: 1681087197
Format: PDF, Docs
Download Now
Researchers, politicians and lay persons around the world agree that renewable energy technologies will play an increasingly important role in strengthening national economies in the future. The renewable energy industry has the potential to significantly increase power capacity of several countries and subsequently create many jobs. This book examines recent advances in specific renewable energy systems. Readers will learn about theoretical and applied perspectives which are key to addressing the major issues associated with such systems. Chapters cover solar energy systems, thermal energy storage, bioenergy, hydrogen production, geothermal energy and measurement techniques for these energy systems. Students in engineering programs, and engineers working in academia and the renewable energy sector will be able to broaden their understanding of complex renewable energy projects through the comprehensive overview of both the fundamental concepts and the technical issues covered in the text.

Exergy

Author: Ibrahim Dincer
Publisher: Newnes
ISBN: 0080970907
Format: PDF, Docs
Download Now
This book deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments Connects exergy with three essential areas in terms of energy, environment and sustainable development Provides a number of illustrative examples, practical applications, and case studies Written in an easy-to-follow style, starting from the basics to advanced systems

Thermodynamics for Sustainable Management of Natural Resources

Author: Wojciech Stanek
Publisher: Springer
ISBN: 3319486497
Format: PDF
Download Now
This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management. Divided into two parts, the first section provides the theoretical background to assessment methods, while the second section provides practical application examples. The topics covered in detail include the theory of exergy cost and thermo-ecological cost, cumulative calculus and life cycle evaluation. This book serves as a valuable resource for researchers looking to investigate a range of advanced thermodynamic assessments of the influence of production processes on the depletion of nonrenewable resources.

Advanced Renewable Energy Sources

Author: G. N. Tiwari
Publisher: Royal Society of Chemistry
ISBN: 1849733805
Format: PDF
Download Now
A unique book dealing with all types of renewable energy resources, aimed at scientists but also a textbook for science students

The Role of Exergy in Energy and the Environment

Author: Sandro Nižetić
Publisher: Springer
ISBN: 3319898450
Format: PDF, Mobi
Download Now
This book is devoted to the analysis and applications of energy, exergy, and environmental issues in all sectors of the economy, including industrial processes, transportation, buildings, and services. Energy sources and technologies considered are hydrocarbons, wind and solar energy, fuel cells, as well as thermal and electrical storage. This book provides theoretical insights, along with state-of-the-art case studies and examples and will appeal to the academic community, but also to energy and environmental professionals and decision makers.

Energy Systems of Complex Buildings

Author: Andrzej Ziębik
Publisher: Springer Science & Business Media
ISBN: 1447143817
Format: PDF, ePub
Download Now
The production and consumption of energy carriers in complex buildings take place within the network of interconnected energy processes. For this reason, a change carried out in one energy process influences other energy processes. Therefore, all balance equations of energy carriers should be investigated as a whole, and energy management of complex buildings creates a large energy system with internal relationships between energy installations and the equipment, as well as external relationships with the environment. Energy Systems of Complex Buildings presents the system approach to the energy-ecological analysis of energy management in complex buildings. Mathematical models of balancing the direct energy consumption, as well as cumulative energy consumption and cumulative emission of noxious substances are based on input-output analysis. Algorithms devoted to system analysis in the exploitation of energy management of complex buildings are included. In the case of ecological analysis, a new approach is presented basing on the idea of thermoecological costs. In this way, two groups of noxious influence (depletion of non-renewable energy resources and emissions of noxious substances) are taken into account. The LCA energy-ecological analysis of complex buildings has also been presented. Students, building designers, energy auditors, and researchers will learn the methodology of evaluating the energy and ecological effects by applying new technologies and devices in buildings, which influence future investigations concerning the energy and ecological analysis of complex buildings.