Expert Systems and Probabilistic Network Models

Author: Enrique Castillo
Publisher: Springer Science & Business Media
ISBN: 1461222702
Format: PDF, ePub, Mobi
Download Now
Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.

Advances in Bayesian Networks

Author: José A. Gámez
Publisher: Springer
ISBN: 3540398791
Format: PDF, Docs
Download Now
In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as artificial intelligence and statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, Advances in Bayesian Networks presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval.

Resilience Engineering

Author: Nii Attoh-Okine
Publisher: Cambridge University Press
ISBN: 0521193494
Format: PDF, Docs
Download Now
The book is intended for readers who have backgrounds in probability. It is suitable for practicing engineers, analysts, and researchers.

Advances in Case Based Reasoning

Author: Enrico Blanzieri
Publisher: Springer
ISBN:
Format: PDF, ePub, Mobi
Download Now
This book constitutes the refereed proceedings of the 5th European Workshop on Case-Based Reasonning, EWCBR 2000, held in Trento, Italy in September 2000. The 40 revised full papers presented together with two invited contributions were carefully reviewed and selected for inclusion in the book. All curves issues in case-based reasoning, ranging from foundational and theoretical aspects to advanced applications in various fields are addressed.

Probabilistic Networks and Expert Systems

Author: Robert G. Cowell
Publisher: Springer Science & Business Media
ISBN: 9780387718231
Format: PDF, ePub, Mobi
Download Now
Winner of the 2002 DeGroot Prize. Probabilistic expert systems are graphical networks that support the modelling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors over a number of years, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms, emphasizing those cases in which exact answers are obtainable. It covers both the updating of probabilistic uncertainty in the light of new evidence, and statistical inference, about unknown probabilities or unknown model structure, in the light of new data. The careful attention to detail will make this work an important reference source for all those involved in the theory and applications of probabilistic expert systems. This book was awarded the first DeGroot Prize by the International Society for Bayesian Analysis for a book making an important, timely, thorough, and notably original contribution to the statistics literature. Robert G. Cowell is a Lecturer in the Faculty of Actuarial Science and Insurance of the Sir John Cass Business School, City of London. He has been working on probabilistic expert systems since 1989. A. Philip Dawid is Professor of Statistics at Cambridge University. He has served as Editor of the Journal of the Royal Statistical Society (Series B), Biometrika and Bayesian Analysis, and as President of the International Society for Bayesian Analysis. He holds the Royal Statistical Society Guy Medal in Bronze and in Silver, and the Snedecor Award for the Best Publication in Biometry. Steffen L. Lauritzen is Professor of Statistics at the University of Oxford. He has served as Editor of the Scandinavian Journal of Statistics. He holds the Royal Statistical Society Guy Medal in Silver and is an Honorary Fellow of the same society. He has, jointly with David J. Spiegelhalter, received the American Statistical Association’s award for an "Outstanding Statistical Application." David J. Spiegelhalter is Winton Professor of the Public Understanding of Risk at Cambridge University and Senior Scientist in the MRC Biostatistics Unit, Cambridge. He has published extensively on Bayesian methodology and applications, and holds the Royal Statistical Society Guy Medal in Bronze and in Silver.

Bayesian Networks and Influence Diagrams A Guide to Construction and Analysis

Author: Uffe B. Kjærulff
Publisher: Springer Science & Business Media
ISBN: 1461451043
Format: PDF, ePub, Docs
Download Now
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.