Failure Mechanisms of Advanced Welding Processes

Author: X Sun
Publisher: Elsevier
ISBN: 1845699769
Format: PDF
Download Now
Many new, or relatively new, welding processes such as friction stir welding, resistance spot welding and laser welding are being increasingly adopted to replace or improve on traditional welding techniques. Before advanced welding techniques are employed, their potential failure mechanisms should be well understood and their suitability for welding particular metals and alloys in different situations should be assessed. Failure mechanisms of advanced welding processes provides a critical analysis of advanced welding techniques and their potential failure mechanisms. The book contains chapters on the following topics: Mechanics modelling of spot welds under general loading conditions and applications to fatigue life predictions, Resistance spot weld failure mode and weld performance for aluminium alloys, dual phase steels and TRIP steels, Fatigue behaviour of spot welded joints in steel sheets, Non-destructive evaluation of spot weld quality, Solid state joining - fundamentals of friction stir welding, Failure mechanisms in friction stir welds, Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminium alloy, Fatigue in laser welds, Weld metal ductility and its influence on formability of tailor welded blanks, Joining of lightweight materials using reactive nanofoils, and Fatigue life prediction and improvements for MIG welded advanced high strength steel weldments. With its distinguished editor and international team of contributors, Failure mechanisms of advanced welding processes is a standard reference text for anyone working in welding and the automotive, shipbuilding, oil and gas and other metal fabrication industries who use modern and advanced welding processes. Provides a critical analysis of advanced welding techniques and their potential failure mechanisms Experts in the field survey a range of welding processes and examine reactions under various types of loading conditions Examines the current state of fatigue life prediction of welded materials and structures in the context of spot welded joints and non-destructive evaluation of quality

Advanced Welding Processes

Author: J Norrish
Publisher: Elsevier
ISBN: 1845691709
Format: PDF, ePub, Mobi
Download Now
Advanced welding processes provides an excellent introductory review of the range of welding technologies available to the structural and mechanical engineer. The book begins by discussing general topics such power sources, filler materials and gases used in advanced welding. A central group of chapters then assesses the main welding techniques: gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), high energy density processes and narrow-gap welding techniques. Two final chapters review process control, automation and robotics. Advanced welding processes is an invaluable guide to selecting the best welding technology for mechanical and structural engineers. An essential guide to selecting the best welding technology for mechanical and structural engineers Provides an excellent introductory review of welding technologies Topics include gas metal arc welding, laser welding and narrow gap welding methods

Welding and Joining of Advanced High Strength Steels AHSS

Author: Mahadev Shome
Publisher: Elsevier
ISBN: 0857098586
Format: PDF, Docs
Download Now
Welding and Joining of Advanced High Strength Steels (AHSS): The Automotive Industry discusses the ways advanced high strength steels (AHSS) are key to weight reduction in sectors such as automotive engineering. It includes a discussion on how welding can alter the microstructure in the heat affected zone, producing either excessive hardening or softening, and how these local changes create potential weaknesses that can lead to failure. This text reviews the range of welding and other joining technologies for AHSS and how they can be best used to maximize the potential of AHSS. Reviews the properties and manufacturing techniques of advanced high strength steels (AHSS) Examines welding processes, performance, and fatigue in AHSS Focuses on AHSS welding and joining within the automotive industry

The Welding Engineer s Guide to Fracture and Fatigue

Author: Philippa L Moore
Publisher: Elsevier
ISBN: 1782423915
Format: PDF, Kindle
Download Now
The Welding Engineer's Guide to Fracture and Fatigue provides an essential introduction to fracture and fatigue and the assessment of these failure modes, through to the level of knowledge that would be expected of a qualified welding engineer. Part one covers the basic principles of weld fracture and fatigue. It begins with a review of the design of engineered structures, provides descriptions of typical welding defects and how these defects behave in structures undergoing static and cyclical loading, and explains the range of failure modes. Part two then explains how to detect and assess defects using fitness for service assessment procedures. Throughout, the book assumes no prior knowledge and explains concepts from first principles. Covers the basic principles of weld fracture and fatigue. Reviews the design of engineered structures, provides descriptions of typical welding defects and how these defects behave in structures undergoing static and cyclical loading, and explains the range of failure modes. Explains how to detect and assess defects using fitness for service assessment procedures.

Self Piercing Riveting

Author: A Chrysanthou
Publisher: Woodhead Publishing
ISBN: 0857098845
Format: PDF, ePub, Docs
Download Now
Due to its speed, low energy requirements, and the fact that it does not require a pre-drilled hole, the technique of self-piercing riveting (SPR) has been increasingly adopted by many industries as a high-speed mechanical fastening technique for the joining of sheet material components. Self-piercing riveting comprehensively reviews the process, equipment, and corrosion behaviour of self-piercing riveting, and also describes the process of evaluation and modelling of strength of self-piercing riveted joints, quality control methods and non-destructive testing. Part one provides an extensive overview of the properties of self-piercing riveting. Chapters in this section review the mechanical strength, fatigue, and corrosion behaviour of self-piercing riveted joints. The second part of the book outlines the processing and applications of SPRs, and describes the dynamic strength evaluation/crashworthiness of SPRs, and the modelling of strength of self-piercing riveted joints, before going on to discuss the assessment of the suitability of materials for self-piercing riveting. The concluding chapters describe the quality control and non-destructive testing of self-piercing riveted joints, optimization of the strength of self-piercing rivets, and provides an overview of self-piercing rivets in the automotive industry and the applications of self-piercing riveting in automated vehicle construction. Self-piercing riveting is a standard reference for engineers and designers in the aerospace, materials, welding, joining, automotive and white goods industries, as well as manufacturers of metal components for the automotive, aerospace, white goods and building industries. Comprehensively reviews the process, equipment, and corrosion behaviour of self-piercing riveting Describes the process of evaluation and modelling of strength of self-piercing riveted joints, quality control methods and non-destructive testing Provides an overview of quality, optimization, applications and strength evaluations of self-piercing riveting

Friction Stir Welding

Author: Daniela Lohwasser
Publisher: Elsevier
ISBN: 1845697715
Format: PDF, Mobi
Download Now
Friction stir welding (FSW) is a highly important and recently developed joining technology that produces a solid phase bond. It uses a rotating tool to generate frictional heat that causes material of the components to be welded to soften without reaching the melting point and allows the tool to move along the weld line. Plasticized material is transferred from the leading edge to trailing edge of the tool probe, leaving a solid phase bond between the two parts. Friction stir welding: from basics to applications reviews the fundamentals of the process and how it is used in industrial applications. Part one discusses general issues with chapters on topics such as basic process overview, material deformation and joint formation in friction stir welding, inspection and quality control and friction stir welding equipment requirements and machinery descriptions as well as industrial applications of friction stir welding. A chapter giving an outlook on the future of friction stir welding is included in Part one. Part two reviews the variables in friction stir welding including residual stresses in friction stir welding, effects and defects of friction stir welds, modelling thermal properties in friction stir welding and metallurgy and weld performance. With its distinguished editors and international team of contributors, Friction stir welding: from basics to applications is a standard reference for mechanical, welding and materials engineers in the aerospace, automotive, railway, shipbuilding, nuclear and other metal fabrication industries, particularly those that use aluminium alloys. Provides essential information on topics such as basic process overview, materials deformation and joint formation in friction stir welding Inspection and quality control and friction stir welding equipment requirements are discussed as well as industrial applications of friction stir welding Reviews the variables involved in friction stir welding including residual stresses, effects and defects of friction stir welds, modelling thermal properties, metallurgy and weld performance

The Welding of Aluminium and Its Alloys

Author: Gene Mathers
Publisher: Woodhead Publishing
ISBN: 9781855735675
Format: PDF, Mobi
Download Now
The welding of aluminium and its alloys provides a basic understanding of the metallurgical principles involved in the way that alloys achieve their strength and how welding can affect their properties. The book is aimed at engineers with little or no knowledge of metallurgy and perhaps only the briefest acquaintance with welding processes. It is intended as a practical guide for the shop-floor engineer and covers weldability of aluminium alloys, process description, advantages, limitations, proposed weld parameters, health and safety issues, preparation for welding, quality assurance and quality control issues along with problem solving. The book includes sections on parent metal storage and preparation prior to welding. It describes the more frequently encountered processes and has recommendations on welding parameters that may be used as a starting point for the development of a viable welding procedure. Included are hints and tips on how to avoid some of the pitfalls of welding these sometimes problematic materials. The content is both descriptive and qualitative, and the author has avoided the use of mathematical expressions to describe the effects of welding. This book is essential reading for welding engineers, production engineers, production managers, designers and shop-floor supervisors involved in the aluminium fabrication industry.

Joining Textiles

Author: I Jones
Publisher: Elsevier
ISBN: 0857093967
Format: PDF, ePub, Mobi
Download Now
Understanding the techniques for joining fabrics together in a way that considers durability, strength, leak-tightness, comfort in wear and the aesthetics of the joints is critical to the production of successful, structurally secure fabric products. Joining textiles: Principles and applications is an authoritative guide to the key theories and methods used to join fabrics efficiently. Part one provides a clear overview of sewing technology. The mechanics of stitching, sewing and problems related to sewn textiles are discussed, along with mechanisms of sewing machines and intelligent sewing systems. Part two goes on to explore adhesive bonding of textiles, including principles, methods and applications, along with a review of bonding requirements in coating and laminating of textiles. Welding technologies are the focus of part three. Heat sealing, ultrasonic and dielectric textile welding are covered, as are laser seaming of fabrics and the properties and performance of welded or bonded seams. Finally, part four reviews applications of joining textiles such as seams in non-iron shirts and car seat coverings, joining of wearable electronic components and technical textiles, and the joining techniques involved in industrial and medical products including nonwoven materials. With its distinguished editors and international team of expert contributors, Joining textiles is an important reference work for textile product manufacturers, designers and technologists, fibre scientists, textile engineers and academics working in this area. Provides an authoritative guide to the key theories and methods used to efficiently join fabrics Discusses the mechanics of stitching and sewing and problems related to sewn textiles, alongside mechanisms of sewing machines, and intelligent sewing systems Explores adhesive bonding of textiles, including principles, methods and applications, along with a review of bonding requirements in coating and laminating of textiles

Fracture and Fatigue of Welded Joints and Structures

Author: K Macdonald
Publisher: Elsevier
ISBN: 0857092502
Format: PDF
Download Now
The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process. Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures. With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field. Analyses the processes and causes of fracture and fatigue, focusing predicting and minimising the failure of welded joints in the design process Assesses the fracture of welded joints and structure featuring constraint-based fracture mechanics for predicting joint failure Explores specific considerations in fatigue analysis including the assessment of local stresses in welded joints and fatigue design rules for welded structures

Welding and Joining of Magnesium Alloys

Author: L Liu
Publisher: Elsevier
ISBN: 0857090429
Format: PDF, ePub, Docs
Download Now
Due to the wide application of magnesium alloys in metals manufacturing, it is very important to employ a reliable method of joining these reactive metals together and to other alloys. Welding and joining of magnesium alloys provides a detailed review of both established and new techniques for magnesium alloy welding and their characteristics, limitations and applications. Part one covers general issues in magnesium welding and joining, such as welding materials, metallurgy and the joining of magnesium alloys to other metals such as aluminium and steel. The corrosion and protection of magnesium alloy welds are also discussed. In part two particular welding and joining techniques are reviewed, with chapters covering such topics as inert gas welding, metal inert gas welding and laser welding, as well as soldering, mechanical joining and adhesive bonding. The application of newer techniques to magnesium alloys, such as hybrid laser-arc welding, activating flux tungsten inert gas welding and friction stir, is also discussed. With its distinguished editor and expert team of contributors, Welding and joining of magnesium alloys is a comprehensive reference for producers of primary magnesium and those using magnesium alloys in the welding, automotive and other such industries, as well as academic researchers in metallurgy and materials science. Provides a detailed review of both established and new techniques for magnesium alloys welding and their characteristics, limitations and applications Both the weldability of magnesium alloys and weldability to other metals is assessed as well as the preparation required for welding featuring surface treatment Particular welding and joining technologies are explored in detail with particular chapters examining hybrid laser-arc welding, laser welding and resistance spot welding