Finely Dispersed Particles

Author: Aleksandar M. Spasic
Publisher: CRC Press
ISBN: 1420027662
Format: PDF, Kindle
Download Now
Over the last decade, the biggest advances in physical chemistry have come from thinking smaller. The leading edge in research pushes closer to the atomic frontier with every passing year. Collecting the latest developments in the science and engineering of finely dispersed particles and related systems, Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering explores heat, mass, momentum and electron transfer phenomena of well-characterized interfaces at the milli-, micro-, nano-, and atto-scales. An interdisciplinary team of leading experts from around the world discuss recent concepts in the physics and chemistry of various well-studied interfaces of rigid and deformable particles in homo- and hetero-aggregate dispersed systems, including emulsions, dispersoids, foams, fluosols, polymer membranes, and biocolloids. The contributors clearly elucidate the hydrodynamic, electrodynamic, and thermodynamic instabilities that occur at interfaces, as well as the rheological properties of interfacial layers responsible for droplets, particles, and droplet-particle-film structures in finely dispersed systems. The book examines structure and dynamics from various angles, such as relativistic and non-relativistic theories, molecular orbital methods, and transient state theories. With a comprehensive survey of our current understanding, Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering provides a solid platform for further exploration and discovery at increasingly smaller scales.

Emulsions and Emulsion Stability

Author: Johan Sjoblom
Publisher: CRC Press
ISBN: 1420028081
Format: PDF, Mobi
Download Now
Emulsions and Emulsion Stability, Second Edition provides comprehensive coverage of both theoretical and practical aspects of emulsions. The book presents fundamental concepts and processes in emulsified systems, such as flocculation, coalescence, stability, precipitation, deposition, and the evolution of droplet size distribution. The book explains how to predict emulsion stability and determine droplet sizes in a variety of emulsion systems. It discusses spontaneous emulsification and the formation of “nanoemulsions” as well as droplet-droplet interactions in different electrical fields (electrocoalescence), and the formulation, composition, and preparation variables that contribute to the inversion in emulsion systems. Several chapters emphasize applications such as emulsification encountered in oil spills, asphalt, chemical flooding, acid crude oils, and large-scale industrial wastewater treatment. The survey of experimental characterization methods highlights the importance of thin liquid films in colloidal systems and assesses different NMR applications, ultrasound characterization, video microscopy, and other on-line instrumentation. The last chapter in the book deals with obtaining conductivity measurements as an alternative to online instrumentation. Completely revised and expanded, this second edition of Emulsions and Emulsion Stability offers a well-rounded collection of knowledge that is applicable to all academic and industrial scientists and researchers in the fields of surfactant and emulsion science.

Sugar Based Surfactants

Author: Cristóbal Carnero Ruiz
Publisher: CRC Press
ISBN: 9781420051674
Format: PDF, Docs
Download Now
Touted as the new darling of the chemical industry, alkyl polyglycosides are gaining in popularity due to the fact that they are readily biodegradable, low-toxic, and made from renewable resources. Sugar-Based Surfactants compiles the most recent and relevant aspects of sugar-based surfactants, including self-association, phase behavior, and interfacial properties. Focusing on both colloidal and interfacial science, the book deals with the adsorption of surfactants in both the air-liquid and solid-liquid interfaces. It also covers new advances in surfactant science, such as the development of a family of potent surface active agents that are non-toxic, and thus usable in ubiquitous consumer products

The Science of Defoaming

Author: Peter R. Garrett
Publisher: CRC Press
ISBN: 1420060422
Format: PDF, ePub, Docs
Download Now
In the 20 years since the publication of the author’s multi-contributor volume on defoaming, a vast amount of new work has been published and many new insights have been revealed. A cohesive, single-authored book, The Science of Defoaming: Theory, Experiment and Applications provides comprehensive coverage of the topic. It describes the mode of action of antifoams, presenting the relevant theory and the supporting experimental evidence. Beginning with an introductory chapter that discusses the intrinsic properties of foam, the book then describes experimental methods for measuring foam properties important for studying antifoam action and techniques used in establishing the mode of action of antifoams. Since most commercially effective antifoams are oil based, a chapter is devoted to the entry and spreading behavior of oils and the role of thin film forces in determining that behavior. The book reviews the mode of action of antifoams, including theories of antifoam mechanisms and the role of bridging foam films by particles and oil drops. It also addresses issues related to the effect of antifoam concentration on foam formation by air entrainment and the process of deactivation of mixed oil–particle antifoams during dispersal and foam generation. For applications where chemical antifoam use is unacceptable, the text examines mechanical means of defoaming, such as the use of rotary devices and ultrasound. The final chapters consider the application of defoaming in radically different contexts including waterborne latex paints and varnishes, machine washing of textiles, gas–oil separation in crude oil production, and cardiopulmonary bypass surgery. Focusing on the basic science of defoaming, this book presents a balanced view, which also addresses the challenges that may arise for these specific defoaming applications.

Giant Micelles

Author: Raoul Zana
Publisher: CRC Press
ISBN: 9780849373084
Format: PDF, ePub, Docs
Download Now
The co-evolution of a strong theoretical framework alongside application of a range of sophisticated experimental tools engendered rapid advancement in the study of “giant micelles.” Beginning with Anacker and Debye’s 1951 experimental study of elongated micelles by light scattering and their subsequent theoretical inference that the thermodynamics of these structures would have to reflect an opposing force model, theory and experiment have progressed hand in hand. This progress, along with growing interest in the practical and industrial applications of these structures in cleansers, cosmetics, pharmaceuticals, and energy production, demands a comprehensive, single-source reference to the current state-of-the-science. Drawing on the expertise of internationally known scientists, Giant Micelles: Properties and Applications summarizes the range of behaviors encountered in solutions of micelles and their applications in industrial processes. The book introduces theoretical aspects of the rheological behavior and formation of giant micelles from different viewpoints including molecular-level thermodynamic theory and computer simulations. It continues by focusing on the results of a variety of experimental studies using methods such as cryo-transmission electron microscopy, scattering techniques, phase diagrams, linear and non-linear rheology, and chemical relaxation. Illustrating the properties of giant micelles on solid surfaces, the book also considers systems of smart micelles that respond to external stimuli by a change of shape. The authors describe giant micelles formed from amphiphilic block copolymers as well as non-covalent polymers that exhibit similar rheological behavior to giant micelles. Finally, the chapters address current and emerging applications of giant micelles in oil and gas production, drag reduction, drug-delivery formulations, and personal care products such as shampoo. By gathering a range of information into one volume, Giant Micelles: Properties and Applications provides scientists with an essential reference on these fascinating materials and their emerging role in industrial application.

Nanotechnology

Author: Louis Theodore
Publisher: John Wiley & Sons
ISBN: 0471751995
Format: PDF, ePub
Download Now
A practical workbook that bridges the gap between theory and practice in the nanotechnology field Because nanosized particles possess unique properties, nanotechnology is rapidly becoming a major interest in engineering and science. Nanotechnology: Basic Calculations for Engineers and Scientists-a logical follow-up to the author's previous text, Nanotechnology: Environmental Implications and Solutions-presents a practical overview of nanotechnology in a unique workbook format. The author has developed nearly 300 problems that provide a clear understanding of this growing field in four distinct areas of study: * Chemistry fundamentals and principles * Particle technology * Applications * Environmental concerns These problems have been carefully chosen to address the most important basic concepts, issues, and applications within each area, including such topics as patent evaluation, toxicology, particle dynamics, ventilation, risk assessment, and manufacturing. An introduction to quantum mechanics is also included in the Appendix. These stand-alone problems follow an orderly and logical progression designed to develop the reader's technical understanding. "This is certain to become the pacesetter in the field, a text to benefit both students of all technical disciplines and practicing engineers and researchers." -Dr. Howard Beim, Professor of Chemistry, U.S. Merchant Marine Academy "Dr. Theodore has covered most of the important nanotechnology subject matter in this ...work through simple, easy-to-follow problems." -John McKenna, President and CEO, ETS, Inc.

Principles of Plasma Discharges and Materials Processing

Author: Michael A. Lieberman
Publisher: John Wiley & Sons
ISBN: 0471724246
Format: PDF, Mobi
Download Now
A Thorough Update of the Industry Classic on Principles of Plasma Processing The first edition of Principles of Plasma Discharges and Materials Processing, published over a decade ago, was lauded for its complete treatment of both basic plasma physics and industrial plasma processing, quickly becoming the primary reference for students and professionals. The Second Edition has been carefully updated and revised to reflect recent developments in the field and to further clarify the presentation of basic principles. Along with in-depth coverage of the fundamentals of plasma physics and chemistry, the authors apply basic theory to plasma discharges, including calculations of plasma parameters and the scaling of plasma parameters with control parameters. New and expanded topics include: * Updated cross sections * Diffusion and diffusion solutions * Generalized Bohm criteria * Expanded treatment of dc sheaths * Langmuir probes in time-varying fields * Electronegative discharges * Pulsed power discharges * Dual frequency discharges * High-density rf sheaths and ion energy distributions * Hysteresis and instabilities * Helicon discharges * Hollow cathode discharges * Ionized physical vapor deposition * Differential substrate charging With new chapters on dusty plasmas and the kinetic theory of discharges, graduate students and researchers in the field of plasma processing should find this new edition more valuable than ever.

Coagulation and Flocculation Second Edition

Author: Bohuslav Dobias
Publisher: CRC Press
ISBN: 1420027689
Format: PDF, ePub, Mobi
Download Now
First published in 1993, Coagulation and Flocculation is a practical reference for the researchers in the field of the stabilization and destabilization of fine solid dispersions. By omitting chapters that remained unchanged from the first edition, the editors of this second edition completely update, rewrite, and expand upon all chapters to reflect a decade of the latest advances in both theoretical and application aspects of the field. The authors provide expanded material that includes dissociation from a solid surface with independent sites; improvements to the Gouy-Chapman model; electrical double layer, surface ionization, and surface heterogeneity; thin liquid films and modeling of a semi-batch process using microprocesses probabilities; and clay mineral intracrystalline reactions, applications, and gelation. New chapters cover homopolymers and their effect on colloid stability, including never before published figures and equations; the stability of suspensions in the presence of surfactants, polymers, and mixtures; and the flocculation and dewatering of fine-particle suspensions, emphasizing floc formation, growth, structure, and applications. The second edition of Coagulation and Flocculation effectively captures both the theoretical and application aspects of the latest advances in the evolving field of solid dispersions, suspensions, and mixtures.