Finite Element Methods for Engineers

Author: Roger T Fenner
Publisher: World Scientific Publishing Company
ISBN: 1908979674
Format: PDF
Download Now
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full FORTRAN programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the FORTRAN language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use on desktops and laptops. Unlike the first edition, the new edition has problems (with solutions) at the end of each chapter. Electronic copies of all the computer programs displayed in the book can be downloaded at: http://www.worldscientific.com/doi/suppl/10.1142/p847/suppl_file/p847_program.zip.

The Finite Element Method in Engineering

Author: Singiresu S. Rao
Publisher: Butterworth-Heinemann
ISBN: 0128143649
Format: PDF, Mobi
Download Now
The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique—an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis. Includes revised and updated chapters on MATLAB, Ansys and Abaqus Offers a new chapter, Additional Topics in Finite Element Method Includes discussion of practical considerations, errors and pitfalls in FEM singularity elements Features a brief presentation of recent developments in FEM including extended FEM (X-FEM), augmented FEM (A-FEM) and partition of unity FEM (POUFEM) Features improved pedagogy, including the addition of more design-oriented and practical examples and problems Covers real-life applications, sample review questions at the end of most chapters, and updated references

The Finite Element Method for Engineers

Author: Kenneth H. Huebner
Publisher: John Wiley & Sons
ISBN: 9780471370789
Format: PDF
Download Now
A useful balance of theory, applications, and real-world examples The Finite Element Method for Engineers, Fourth Edition presents a clear, easy-to-understand explanation of finite element fundamentals and enables readers to use the method in research and in solving practical, real-life problems. It develops the basic finite element method mathematical formulation, beginning with physical considerations, proceeding to the well-established variation approach, and placing a strong emphasis on the versatile method of weighted residuals, which has shown itself to be important in nonstructural applications. The authors demonstrate the tremendous power of the finite element method to solve problems that classical methods cannot handle, including elasticity problems, general field problems, heat transfer problems, and fluid mechanics problems. They supply practical information on boundary conditions and mesh generation, and they offer a fresh perspective on finite element analysis with an overview of the current state of finite element optimal design. Supplemented with numerous real-world problems and examples taken directly from the authors' experience in industry and research, The Finite Element Method for Engineers, Fourth Edition gives readers the real insight needed to apply the method to challenging problems and to reason out solutions that cannot be found in any textbook.

Finite and Boundary Element Methods in Engineering

Author: O.P. Gupta
Publisher: CRC Press
ISBN: 9789054107651
Format: PDF, ePub
Download Now
The interest in finite element method as a solution technique of the computer age is reflected in the availability of many general and special purpose software based on this technique. This work aims to provide a complete and detailed explanation of the basics of the application areas.

Finite Element Methods for Engineering Sciences

Author: Joel Chaskalovic
Publisher: Springer Science & Business Media
ISBN: 3540763422
Format: PDF, ePub
Download Now
This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. Its unique teaching method explains the analysis using exercises and detailed solutions.

Finite Element Methods for Engineers

Author: U. S. Dixit
Publisher: Cengage Learning
ISBN: 9789814272902
Format: PDF, Kindle
Download Now
Finite Element Methods For Engineers is designed to serve as a textbook for a first course in the finite element method (FEM) for undergraduate and postgraduate students of engineering. It provides an insight into the theory and application of FEM. The book introduces the reader to FEM as a mathematical tool and covers the application of the method to mechanical and civil engineering problems. Beginning with an introduction to calculus of variations, the book goes on to describe Ritz and Galerkin FEM formulations and one-, two-, and three-dimensional FEM formulations. Application of the method to bending of beams, trusses, and frames, and problems of plane stress and plane strain, free vibration, plate, and time history are also included. Discussions on advanced topics such as FEM formulation of flow problems, error analysis in FEM, and non-linear FEM make for a complete introductory text. Inclusion of topics such as approximation methods for solving differential equations, numerical integration, and methods for solving FEM problems on a computer enhance the utility of the book. The book has been written in a simple and comprehensible manner to enable students to grasp important concepts easily. A number of solved problems and illustrations (in colour where required) have been incorporated to aid in the study of relevant topics. A large number of objective questions and exercises have also been included to test the studentsa understanding of FEM and its applications.

Introduction to Finite Element Analysis for Engineers

Author: Saad A. Ragab
Publisher: CRC Press
ISBN: 1315405695
Format: PDF, ePub
Download Now
Finite Element Analysis for Engineers introduces FEA as a technique for solving differential equations, and for application to problems in Civil, Mechanical, Aerospace and Biomedical Engineering and Engineering Science & Mechanics. Intended primarily for senior and first-year graduate students, the text is mathematically rigorous, but in line with students' math courses. Organized around classes of differential equations, the text includes MATLAB code for selected examples and problems. Both solid mechanics and thermal/fluid problems are considered. Based on the first author's class-tested notes, the text builds a solid understanding of FEA concepts and modern engineering applications.

Essentials of the Finite Element Method

Author: Dimitrios G Pavlou
Publisher: Academic Press
ISBN: 0128026065
Format: PDF, ePub, Docs
Download Now
Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou’s Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanical/structural engineers, Essentials of the Finite Element Method presents a complete reference text for the modern engineer. Provides complete and unified coverage of the fundamentals of finite element analysis Covers stiffness matrices for widely used elements in mechanical and civil engineering practice Offers detailed and integrated solutions of engineering examples and computer algorithms in ANSYS, CALFEM, and MATLAB

The Finite Element Method Theory Implementation and Applications

Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Format: PDF, Mobi
Download Now
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​