Flight Dynamics Principles

Author: M. V. Cook
Publisher: Butterworth-Heinemann
ISBN: 0080982425
Format: PDF
Download Now
The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. About the author: After graduating Michael Cook joined Elliott Flight Automation as a Systems Engineer and contributed flight control systems design to several major projects. Later he joined the College of Aeronautics to research and teach flight dynamics, experimental flight mechanics and flight control. Previously leader of the Dynamics, Simulation and Control Research Group he is now retired and continues to provide part time support. In 2003 the Group was recognised as the Preferred Academic Capability Partner for Flight Dynamics by BAE SYSTEMS and in 2007 he received a Chairman's Bronze award for his contribution to a joint UAV research programme. New to this edition: Additional examples to illustrate the application of computational procedures using tools such as MATLAB®, MathCad® and Program CC®. Improved compatibility with, and more expansive coverage of the North American notational style. Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence. An additional coursework study on flight control design for an unmanned air vehicle (UAV).

Advanced Flight Dynamics with Elements of Flight Control

Author: Nandan K. Sinha
Publisher: CRC Press
ISBN: 1498746063
Format: PDF, ePub, Docs
Download Now
Advanced Flight Dynamics aim to integrate the subjects of aircraft performance, trim and stability/control in a seamless manner. Advanced Flight Dynamics highlights three key and unique viewpoints. Firstly, it follows the revised and corrected aerodynamic modeling presented previously in recent textbook on Elementary Flight Dynamics. Secondly, it uses bifurcation and continuation theory, especially the Extended Bifurcation Analysis (EBA) procedure devised by the authors, to blend the subjects of aircraft performance, trim and stability, and flight control into a unified whole. Thirdly, rather than select one control design tool or another, it uses the generalized Nonlinear Dynamic Inversion (NDI) methodology to illustrate the fundamental principles of flight control. Advanced Flight Dynamics covers all the standard airplane maneuvers, various types of instabilities normally encountered in flight dynamics and illustrates them with real-life airplane data and examples, thus bridging the gap between the teaching of flight dynamics/ control theory in the university and its practice in airplane design bureaus. The expected reader group for this book would ideally be senior undergraduate and graduate students, practicing aerospace/flight simulation engineers/scientists from industry as well as researchers in various organizations. Key Features: Focus on unified nonlinear approach, with nonlinear analysis tools. Provides an up-to-date, corrected, and unified presentation of aircraft trim, stability and control analysis including nonlinear phenomena and closed-loop stability analysis. Contains a computational tool and real-life example carried through the chapters. Includes complementary nonlinear dynamic inversion control approach, with relevant aircraft examples. Fills the gap in the market for a text including non-linear flight dynamics and continuation methods.

Advanced UAV Aerodynamics Flight Stability and Control

Author: Pascual Marqués
Publisher: John Wiley & Sons
ISBN: 1118928717
Format: PDF, ePub, Mobi
Download Now
Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.

Flight Dynamics

Author: Robert F. Stengel
Publisher: Princeton University Press
ISBN: 1400866812
Format: PDF, ePub, Docs
Download Now
Flight Dynamics takes a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. While presenting traditional material that is critical to understanding aircraft motions, it does so in the context of modern computational tools and multivariable methods. Robert Stengel devotes particular attention to models and techniques that are appropriate for analysis, simulation, evaluation of flying qualities, and control system design. He establishes bridges to classical analysis and results, and explores new territory that was treated only inferentially in earlier books. This book combines a highly accessible style of presentation with contents that will appeal to graduate students and to professionals already familiar with basic flight dynamics. Dynamic analysis has changed dramatically in recent decades, with the introduction of powerful personal computers and scientific programming languages. Analysis programs have become so pervasive that it can be assumed that all students and practicing engineers working on aircraft flight dynamics have access to them. Therefore, this book presents the principles, derivations, and equations of flight dynamics with frequent reference to MATLAB functions and examples. By using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers. Introductions to aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment accompany the development of the aircraft's dynamic equations.

Aircraft Control and Simulation

Author: Brian L. Stevens
Publisher: John Wiley & Sons
ISBN: 1118870972
Format: PDF, ePub, Docs
Download Now
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.

Aircraft Structures for Engineering Students

Author: T.H.G. Megson
Publisher: Butterworth-Heinemann
ISBN: 0081009984
Format: PDF, Kindle
Download Now
Aircraft Structures for Engineering Students, Sixth Edition, is the leading self-contained aircraft structures course text. It covers all fundamental subjects, including elasticity, structural analysis, airworthiness and aeroelasticity. Now in its sixth edition, the author has expanded the book’s coverage of analysis and design of composite materials for use in aircraft, and has added new, real-world and design-based examples, along with new end-of-chapter problems of varying complexity. Expanded coverage of composite materials and structures New practical and design-based examples and problems throughout the text aid understanding and relate concepts to real world applications Updated and additional Matlab examples and exercises support use of computational tools in analysis and design Available online teaching and learning tools include downloadable Matlab code, solutions manual, and image bank of figures from the book

Aircraft Dynamics and Automatic Control

Author: Duane T. McRuer
Publisher: Princeton University Press
ISBN: 1400855985
Format: PDF, ePub, Docs
Download Now
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Aircraft Flight

Author: R. H. Barnard
Publisher: Pearson Education
ISBN: 9780273730989
Format: PDF, Kindle
Download Now
This book is intended to provide a description on the principles of aircraft flight in physical rather than mathematical terms. It is intended as a general introduction for anyone interested in aircraft or contemplating a career in aeronautics.

Airplane Stability and Control

Author: Malcolm J. Abzug
Publisher: Cambridge University Press
ISBN: 9780521021289
Format: PDF, Kindle
Download Now
From the early machines to todayas sophisticated aircraft, stability and control have always been crucial considerations. In this second edition, Abzug and Larrabee again forge through the history of aviation technologies to present an informal history of the personalities and the events, the art and the science of airplane stability and control. The book includes never-before-available impressions of those active in the field, from pre-Wright brothers airplane and glider builders through to contemporary aircraft designers. Arranged thematically, the book deals with early developments, research centers, the effects of power on stability and control, the discovery of inertial coupling, the challenge of stealth aerodynamics, a look toward the future, and much more. It is profusely illustrated with photographs and figures, and includes brief biographies of noted stability and control figures along with a core bibliography. Professionals, students, and aviation enthusiasts alike will appreciate this readable history of airplane stability and control.