Flow and Transport in Porous Media and Fractured Rock

Author: Muhammad Sahimi
Publisher: John Wiley & Sons
ISBN: 9783527636709
Format: PDF, ePub, Mobi
Download Now
In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject. Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.

Computational Methods for Fracture in Porous Media

Author: René de Borst
Publisher: Elsevier
ISBN: 0081009232
Format: PDF, ePub, Mobi
Download Now
Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods provides a self-contained presentation of new modeling techniques for simulating crack propagation in fluid-saturated porous materials. This book reviews the basic equations that govern fluid-saturated porous media. A multi-scale approach to modeling fluid transport in joins, cracks, and faults is described in such a way that the resulting formulation allows for a sub-grid representation of the crack and fluid flow in the crack. Interface elements are also analyzed with their extension to the hydromechanical case. The flexibility of Extended Finite Element Method for non-stationary cracks is also explored and their formulation for fracture in porous media described. This book introduces Isogeometric finite element methods and its basic features and properties. The rapidly evolving phase-field approach to fracture is also discussed. The applications of this book’s content cover various fields of engineering, making it a valuable resource for researchers in soil, rock and biomechanics. Teaches both new and upcoming computational techniques for simulating fracture in (partially) fluid-saturated porous media Helps readers learn how to couple modern computational methods with non-linear fracture mechanics and flow in porous media Presents tactics on how to simulate fracture propagation in hydraulic fracturing

Rock Fractures and Fluid Flow

Author: Committee on Fracture Characterization and Fluid Flow
Publisher: National Academies Press
ISBN: 0309049962
Format: PDF
Download Now
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Gas Transport in Porous Media

Author: Clifford K. Ho
Publisher: Springer Science & Business Media
ISBN: 140203962X
Format: PDF, Docs
Download Now
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.

Fluids in Porous Media

Author: Henk Huinink
Publisher: Morgan & Claypool Publishers
ISBN: 1681742985
Format: PDF, ePub
Download Now
This book introduces the reader into the field of the physics of processes occurring in porous media. It targets Master and PhD students who need to gain fundamental understanding the impact of confinement on transport and phase change processes. The book gives brief overviews of topics like thermodynamics, capillarity and fluid mechanics in order to launch the reader smoothly into the realm of porous media. In-depth discussions are given of phase change phenomena in porous media, single phase flow, unsaturated flow and multiphase flow. In order to make the topics concrete the book contains numerous example calculations. Further, as much experimental data as possible is plugged in to give the reader the ability to quantify phenomena.

Computational Methods for Multiphase Flows in Porous Media

Author: Zhangxin Chen
Publisher: SIAM
ISBN: 0898716063
Format: PDF, Mobi
Download Now
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Applications Of Percolation Theory

Author: M Sahini
Publisher: CRC Press
ISBN: 148227244X
Format: PDF, Kindle
Download Now
Over the past two decades percolation theory has been used to explain and model a wide variety of phenomena that are of industrial and scientific importance. Examples include characterization of porous materials and reservoir rocks, fracture patterns and earthquakes in rocks, calculation of effective transport properties of porous media permeability, conductivity, diffusivity, etc., groundwater flow, polymerization and gelation, biological evolution, galactic formation in the universe, spread of knowledge, and many others. Most of such applications have resulted in qualitative as well as quantitative predictions for the system of interest. This book attempts to describe in simple terms some of these applications, outline the results obtained so far, and provide further references for future reading.

Heterogeneous Materials

Author: Muhammad Sahimi
Publisher: Springer Science & Business Media
ISBN: 0387217045
Format: PDF, ePub, Docs
Download Now
This monograph describes and discusses the properties of heterogeneous materials, comparing two fundamental approaches to describing and predicting materials’ properties. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.

Convection in Porous Media

Author: Donald A. Nield
Publisher: Springer
ISBN: 3319495623
Format: PDF, Docs
Download Now
This updated edition of a widely admired text provides a user-friendly introduction to the field that requires only routine mathematics. The book starts with the elements of fluid mechanics and heat transfer, and covers a wide range of applications from fibrous insulation and catalytic reactors to geological strata, nuclear waste disposal, geothermal reservoirs, and the storage of heat-generating materials. As the standard reference in the field, this book will be essential to researchers and practicing engineers, while remaining an accessible introduction for graduate students and others entering the field. The new edition features 2700 new references covering a number of rapidly expanding fields, including the heat transfer properties of nanofluids and applications involving local thermal non-equilibrium and microfluidic effects.

Conceptual Models of Flow and Transport in the Fractured Vadose Zone

Author: Board on Earth Sciences and Resources
Publisher: National Academies Press
ISBN: 0309073022
Format: PDF, ePub, Docs
Download Now
Fluid flow and solute transport within the vadose zone, the unsaturated zone between the land surface and the water table, can be the cause of expanded plumes arising from localized contaminant sources. An understanding of vadose zone processes is, therefore, an essential prerequisite for cost-effective contaminant remediation efforts. In addition, because such features are potential avenues for rapid transport of chemicals from contamination sources to the water table, the presence of fractures and other channel-like openings in the vadose zone poses a particularly significant problem, Conceptual Models of Flow and Transport in the Fractured Vadose Zone is based on the work of a panel established under the auspices of the U.S. National Committee for Rock Mechanics. It emphasizes the importance of conceptual models and goes on to review the conceptual model development, testing, and refinement processes. The book examines fluid flow and transport mechanisms, noting the difficulty of modeling solute transport, and identifies geochemical and environmental tracer data as important components of the modeling process. Finally, the book recommends several areas for continued research.