Foundations of Logic and Mathematics

Author: Yves Nievergelt
Publisher: Springer Science & Business Media
ISBN: 146120125X
Format: PDF
Download Now
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.

Logic Mathematics and Computer Science

Author: Yves Nievergelt
Publisher: Springer
ISBN: 1493932233
Format: PDF, Docs
Download Now
This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory. The focuses is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so unintuitive? Why are there no recipes to design proofs? Where do these numerous mathematical rules come from? What issues in logic, mathematics, and computer science still remain unresolved? And the perennial question: In what ways are we going to use this material? Additionally, the selection of topics presented reflects many major accomplishments from the twentieth century and includes applications in game theory and Nash's equilibrium, Gale and Shapley's match making algorithms, Arrow's Impossibility Theorem in voting, to name a few. From the reviews of the first edition: "...All the results are proved in full detail from first principles...remarkably, the arithmetic laws on the rational numbers are proved, step after step, starting from the very definitions!...This is a valuable reference text and a useful companion for anybody wondering how basic mathematical concepts can be rigorously developed within set theory." —MATHEMATICAL REVIEWS "Rigorous and modern in its theoretical aspect, attractive as a detective novel in its applied aspects, this paper book deserves the attention of both beginners and advanced students in mathematics, logic and computer sciences as well as in social sciences." —Zentralblatt MATH

Cryptographic Applications of Analytic Number Theory

Author: Igor Shparlinski
Publisher: Springer Science & Business Media
ISBN: 9783764366544
Format: PDF, Kindle
Download Now
The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.

Mathematical Aspects of Natural and Formal Languages

Author: Gheorghe Paun
Publisher: World Scientific
ISBN: 9814518158
Format: PDF, Kindle
Download Now
This book contains original reviews by well-known workers in the field of mathematical linguistics and formal language theory, written in honour of Professor Solomon Marcus on the occasion of his 70th birthday. Some of the papers deal with contextual grammars, a class of generative devices introduced by Marcus, motivated by descriptive linguistics. Others are devoted to grammar systems, a very modern branch of formal language theory. Automata theory and the algebraic approach to computer science are other well-represented areas. While the contributions are mathematically oriented, practical issues such as cryptography, grammatical inference and natural language processing are also discussed. Contents:Substitutions on Words and LanguagesApplications to Cryptography (A Atanasiu)Grammar Systems: A Multi-Agent Framework for Natural Language Generation (E Csuhaj-Varjú)Normal Forms for Contextual Grammars (A Ehrenfeucht et al.)Control Mechanisms on #-Context-Free Array Grammars (R Freund)On Transitive Cofinal Automata (M Ito & M Katsura)Algebraic Foundations for Montague Grammars (H Jürgensen & K Tent)A Periodic Languages and Generalizations (J Kari & G Thierrin)Matrix Grammars Versus Parallel Communicating Grammar Systems (V Mihalache)Reducts Versus Reducing Operators (M Novotný)On Conditional Grammars and Conditional Petri Nets (F-L Tiplea)and other papers Readership: Computer scientists. keywords:Algebra;Array Grammar;Automaton;Chomsky Grammar;Combinatorics on Words;Cryptography;Grammar System;Marcus Grammar;Mereology;Montague Grammar;Natural Language;Petri Net

Introduction to Cryptography with Mathematical Foundations and Computer Implementations

Author: Alexander Stanoyevitch
Publisher: CRC Press
ISBN: 1439817634
Format: PDF, Mobi
Download Now
From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.

Mathematical Foundations of Public Key Cryptography

Author: Xiaoyun Wang
Publisher: CRC Press
ISBN: 1498702244
Format: PDF, Mobi
Download Now
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography—revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm—the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.

Cryptological Mathematics

Author: Robert Lewand
Publisher: MAA
ISBN: 9780883857199
Format: PDF, Mobi
Download Now
Introduction to the mathematics of cryptology suitable for beginning undergraduates.

Discrete Mathematics with Applications

Author: Susanna Epp
Publisher: Cengage Learning
ISBN: 0495391328
Format: PDF, ePub
Download Now
Susanna Epp’s DISCRETE MATHEMATICS WITH APPLICATIONS, FOURTH EDITION provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp’s emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.