Fourier Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Format: PDF, Kindle
Download Now
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Introduction to Fourier Analysis on Euclidean Spaces

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 9780691080789
Format: PDF, ePub, Mobi
Download Now
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Functional Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 0691113874
Format: PDF, ePub, Docs
Download Now
"This book covers such topics as Lp̂ spaces, distributions, Baire category, probability theory and Brownian motion, several complex variables and oscillatory integrals in Fourier analysis. The authors focus on key results in each area, highlighting their importance and the organic unity of the subject"--Provided by publisher.

Real Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400835569
Format: PDF, ePub, Docs
Download Now
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, Real Analysis is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:

Exercises in Fourier Analysis

Author: T. W. Körner
Publisher: Cambridge University Press
ISBN: 9780521438490
Format: PDF
Download Now
For physicists, engineers and mathematicians, Fourier analysis constitutes a tool of great usefulness. A wide variety of the techniques and applications of the subject were discussed in Dr Körner's highly popular book, Fourier Analysis. Now Dr Körner has compiled a collection of exercises on Fourier analysis that will thoroughly test the understanding of the reader. They are arranged chapter by chapter to correspond with Fourier Analysis, and for all who enjoyed that book, this companion volume will be an essential purchase.

Functional Analysis

Author: P. K. Jain
Publisher: New Age International
ISBN: 9788122408010
Format: PDF, Docs
Download Now
The Book Is Intended To Serve As A Textbook For An Introductory Course In Functional Analysis For The Senior Undergraduate And Graduate Students. It Can Also Be Useful For The Senior Students Of Applied Mathematics, Statistics, Operations Research, Engineering And Theoretical Physics. The Text Starts With A Chapter On Preliminaries Discussing Basic Concepts And Results Which Would Be Taken For Granted Later In The Book. This Is Followed By Chapters On Normed And Banach Spaces, Bounded Linear Operators, Bounded Linear Functionals. The Concept And Specific Geometry Of Hilbert Spaces, Functionals And Operators On Hilbert Spaces And Introduction To Spectral Theory. An Appendix Has Been Given On Schauder Bases.The Salient Features Of The Book Are: * Presentation Of The Subject In A Natural Way * Description Of The Concepts With Justification * Clear And Precise Exposition Avoiding Pendantry * Various Examples And Counter Examples * Graded Problems Throughout Each ChapterNotes And Remarks Within The Text Enhances The Utility Of The Book For The Students.

Fourier Analysis

Author: Javier Duoandikoetxea Zuazo
Publisher: American Mathematical Soc.
ISBN: 9780821883846
Format: PDF, ePub, Docs
Download Now

Singular Integrals and Differentiability Properties of Functions PMS 30

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400883881
Format: PDF, ePub, Docs
Download Now
Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

Introduction to Fourier Analysis and Wavelets

Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 082184797X
Format: PDF, ePub, Docs
Download Now
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs-Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces $L^p(\mathbb{R}^n)$. Chapter 4 gives a gentle introduction to these results, using the Riesz-Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry-Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the $L_2$ theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.

Discrete Fourier Analysis and Wavelets

Author: S. Allen Broughton
Publisher: John Wiley & Sons
ISBN: 1118211006
Format: PDF, ePub, Mobi
Download Now
A thorough guide to the classical and contemporary mathematical methods of modern signal and image processing Discrete Fourier Analysis and Wavelets presents a thorough introduction to the mathematical foundations of signal and image processing. Key concepts and applications are addressed in a thought-provoking manner and are implemented using vector, matrix, and linear algebra methods. With a balanced focus on mathematical theory and computational techniques, this self-contained book equips readers with the essential knowledge needed to transition smoothly from mathematical models to practical digital data applications. The book first establishes a complete vector space and matrix framework for analyzing signals and images. Classical methods such as the discrete Fourier transform, the discrete cosine transform, and their application to JPEG compression are outlined followed by coverage of the Fourier series and the general theory of inner product spaces and orthogonal bases. The book then addresses convolution, filtering, and windowing techniques for signals and images. Finally, modern approaches are introduced, including wavelets and the theory of filter banks as a means of understanding the multiscale localized analysis underlying the JPEG 2000 compression standard. Throughout the book, examples using image compression demonstrate how mathematical theory translates into application. Additional applications such as progressive transmission of images, image denoising, spectrographic analysis, and edge detection are discussed. Each chapter provides a series of exercises as well as a MATLAB project that allows readers to apply mathematical concepts to solving real problems. Additional MATLAB routines are available via the book's related Web site. With its insightful treatment of the underlying mathematics in image compression and signal processing, Discrete Fourier Analysis and Wavelets is an ideal book for mathematics, engineering, and computer science courses at the upper-undergraduate and beginning graduate levels. It is also a valuable resource for mathematicians, engineers, and other practitioners who would like to learn more about the relevance of mathematics in digital data processing.