Fourier Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Format: PDF, ePub, Docs
Download Now
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Functional Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 0691113874
Format: PDF, Mobi
Download Now
"This book covers such topics as Lp̂ spaces, distributions, Baire category, probability theory and Brownian motion, several complex variables and oscillatory integrals in Fourier analysis. The authors focus on key results in each area, highlighting their importance and the organic unity of the subject"--Provided by publisher.

Complex Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Format: PDF, Kindle
Download Now
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Introduction to Fourier Analysis on Euclidean Spaces

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 9780691080789
Format: PDF, Mobi
Download Now
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Reelle und Komplexe Analysis

Author: Walter Rudin
Publisher: Walter de Gruyter
ISBN: 9783486591866
Format: PDF, Kindle
Download Now
Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.

Real Analysis

Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400835569
Format: PDF, Kindle
Download Now
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, Real Analysis is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:

Number Theory Fourier Analysis and Geometric Discrepancy

Author: Giancarlo Travaglini
Publisher: Cambridge University Press
ISBN: 1107044030
Format: PDF, Kindle
Download Now
"The first part of this book is dedicated to the first goal. The reader will find some topics typically presented in introductory books on Number Theory: factorization, arithmetic functions and integer points, congruences and cryptography, quadratic reciprocity, and sums of two and four squares. Starting from the first few pages we introduce some simple and captivating findings, such as Chebyshev's theorem and the elementary results for the Gauss circle problem and for the Dirichlet divisor problem, which may lead the reader to a deeper study of Number Theory, particularly students who are interested in Calculus and Analysis"--

Harmonic Analysis

Author: María Cristina Pereyra
Publisher: American Mathematical Soc.
ISBN: 0821875663
Format: PDF, Kindle
Download Now
In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introduction of discrete Fourier and Haar transforms and fast algorithms, such as the Fast Fourier Transform (FFT) and its wavelet analogues. The approach combines rigorous proof, inviting motivation, and numerous applications. Over 250 exercises are included in the text. Each chapter ends with ideas for projects in harmonic analysis that students can work on independently. This book is published in cooperation with IAS/Park City Mathematics Institute.

Discrete Harmonic Analysis

Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1316863654
Format: PDF, Mobi
Download Now
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.

Fourier Analysis Und Distributionen

Author: Rolf Brigola
Publisher: Tredition Gmbh
ISBN: 9783849528928
Format: PDF, Kindle
Download Now
Das Buch ist eine um 156 Seiten erweiterte Neufassung des vom Autor 1996 bei Vieweg erschienenen Titels "Fourieranalysis, Distributionen und Anwendungen," der seit langem vergriffen ist. Rezensionen zu diesem Titel waren: ..".Besonders wertvoll sind die zahlreichen Beispiele, die sowohl klassische als auch moderne Anwendungen (z.B. in der Signalanalysis) beschreiben. Das Buch ist also vor allem fur Mathematiker(innen) geeignet, die ein wichtiges Werkzeug der anwendungsorientierten Analysis kennenlernen wollen." H.G.Feichtinger, Wien (Monatshefte fur Mathematik 126, 1998) ..".Zusammenfassend empfehle ich das Buch als eine hervorragende Einfuhrung in die klassische und distributionelle harmonische Analysis und in die Distributionentheorie." N.Ortner, Innsbruck (Intern. Math. Nachrichten 181, 1999)