Fractal Geometry

Author: Kenneth Falconer
Publisher: John Wiley & Sons
ISBN: 111876286X
Format: PDF, ePub
Download Now
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals Carefully explains each topic using illustrative examples and diagrams Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics Features a wide range of exercises, enabling readers to consolidate their understanding Supported by a website with solutions to exercises and additional material http://www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)

Measure Topology and Fractal Geometry

Author: Gerald Edgar
Publisher: Springer Science & Business Media
ISBN: 0387747494
Format: PDF, ePub, Mobi
Download Now
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.

Mathematics of Fractals

Author: Masaya Yamaguchi
Publisher: American Mathematical Soc.
ISBN: 9780821805374
Format: PDF, Mobi
Download Now
This book aims at providing a handy explanation of the notions behind the self-similar sets called "fractals" and "chaotic dynamical systems". The authors emphasize the beautiful relationship between fractal functions (such as Weierstrass's) and chaotic dynamical systems; these nowhere-differentiable functions are generating functions of chaotic dynamical systems. These functions are shown to be in a sense unique solutions of certain boundary problems. The last chapter of the book treats harmonic functions on fractal sets.

Techniques in Fractal Geometry

Author: Kenneth Falconer
Publisher: Wiley
ISBN: 9780471957249
Format: PDF, Docs
Download Now
Following on from the success of Fractal Geometry: Mathematical Foundations and Applications, this new sequel presents a variety of techniques in current use for studying the mathematics of fractals. Much of the material presented in this book has come to the fore in recent years. This includes methods for studying dimensions and other parameters of fractal sets and measures, as well as more sophisticated techniques such as thermodynamic formalism and tangent measures. In addition to general theory, many examples and applications are described, in areas such as differential equations and harmonic analysis. This book is mathematically precise, but aims to give an intuitive feel for the subject, with underlying concepts described in a clear and accessible manner. The reader is assumed to be familiar with material from Fractal Geometry, but the main ideas and notation are reviewed in the first two chapters. Each chapter ends with brief notes on the development and current state of the subject. Exercises are included to reinforce the concepts. The author's clear style and up-to-date coverage of the subject make this book essential reading for all those who with to develop their understanding of fractal geometry.

SuperFractals

Author: Michael Fielding Barnsley
Publisher: Cambridge University Press
ISBN: 0521844932
Format: PDF, Docs
Download Now
SuperFractals, first published in 2006, describes mathematics and algorithms for the first time in book form, with breathtaking colour pictures.

Fractals Everywhere

Author: Michael F. Barnsley
Publisher: Courier Corporation
ISBN: 0486320340
Format: PDF, Mobi
Download Now
Up-to-date text focuses on how fractal geometry can be used to model real objects in the physical world, with an emphasis on fractal applications. Includes solutions, hints, and a bonus CD.

The Geometry of Fractal Sets

Author: K. J. Falconer
Publisher: Cambridge University Press
ISBN: 9780521337052
Format: PDF, Kindle
Download Now
This book contains a rigorous mathematical treatment of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Questions of local density and the existence of tangents of such sets are studied, as well as the dimensional properties of their projections in various directions. In the case of sets of integral dimension the dramatic differences between regular 'curve-like' sets and irregular 'dust like' sets are exhibited. The theory is related by duality to Kayeka sets (sets of zero area containing lines in every direction). The final chapter includes diverse examples of sets to which the general theory is applicable: discussions of curves of fractional dimension, self-similar sets, strange attractors, and examples from number theory, convexity and so on. There is an emphasis on the basic tools of the subject such as the Vitali covering lemma, net measures and Fourier transform methods.

Chaos and Fractals

Author: Heinz-Otto Peitgen
Publisher: Springer Science & Business Media
ISBN: 1475747403
Format: PDF, ePub, Docs
Download Now
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.

Fractals

Author: Jens Feder
Publisher: Springer Science & Business Media
ISBN: 1489921249
Format: PDF, ePub, Docs
Download Now
This lovely little book will take off and fly on its own power, but the author has asked me to write a few words, and one should not say no to a friend. Specific topics in fractal geometry and its applications have already benefited from several excellent surveys of moderate length, and gossip and preliminary drafts tell us that we shall soon see several monographic treatments of broader topics. For the teacher, however, these surveys and monographs are not enough, and an urgent need for more helpful books has been widely recognized. To write such a book is no easy task, but Jens Feder meets the challenge head on. His approach combines the old Viking's willingness to attack many difficulties at the same time, and the modern Norwegian's ability to achieve fine balance between diverging needs. lowe him special gratitude for presenting the main facts about R/ S analysis of long-run dependence; now a wide scientific public will have access to a large group of papers of mine that had until this day remained fairly confidential. Last but not least, we are all grateful to Jens for not having allowed undue personal modesty to deprive us of accounts of his own group's varied and excellent work. He did not attempt to say everything, but what he said is just fine. Benoit B. Mandelbrot Physics Department, IBM Thomas J.

Fractal Worlds

Author: Michael Frame
Publisher: Yale University Press
ISBN: 030019787X
Format: PDF, Mobi
Download Now
Fractal geometry is a uniquely fascinating area of mathematics, exhibited in a range of shapes that exist in the natural world, from a simple broccoli floret to a majestic mountain range. In this essential primer, mathematician Michael Frame--a close collaborator with Benoit Mandelbrot, the founder of fractal geometry--and poet Amelia Urry explore the amazing world of fractals as they appear in nature, art, medicine, and technology. Frame and Urry offer new insights into such familiar topics as measuring fractal complexity by dimension and the life and work of Mandelbrot. In addition, they delve into less-known areas: fractals with memory, the Mandelbrot set in four dimensions, fractals in literature, and more. An inviting introduction to an enthralling subject, this comprehensive volume is ideal for learning and teaching.