Fractional Calculus View of Complexity

Author: Bruce J. West
Publisher: CRC Press
ISBN: 149873801X
Format: PDF, ePub, Mobi
Download Now
This book is not a text devoted to a pedagogical presentation of a specialized topic nor is it a monograph focused on the author's area of research. It accomplishes both these things while providing a rationale for why the reader ought to be interested in learning about fractional calculus. This book is for researchers who has heard about many of these scientifically exotic activities, but could not see how they fit into their own scientific interests, or how they could be made compatible with the way they understand science. It is also for beginners who have not yet decided where their scientific talents could be most productively applied. The book provides insight into the long-term direction of science and show how to develop the skills necessary to successfully do research in the twenty-first century.

Nature s Patterns and the Fractional Calculus

Author: Bruce J. West
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110535130
Format: PDF, ePub, Mobi
Download Now
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system’s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system‘s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. Contents Complexity Empirical allometry Statistics, scaling and simulation Allometry theories Strange kinetics Fractional probability calculus

Simplifying Complexity Life is Uncertain Unfair and Unequal

Author: Bruce J. West
Publisher: Bentham Science Publishers
ISBN: 1681082179
Format: PDF, Mobi
Download Now
In life, we often face unavoidable complexities in terms of our ability to understand or influence outcomes. Some questions which arise due to these complexities are: Why can’t the future be made certain? Why do the some people or events always end up at the center of controversy? Why do only a select few get ahead of their peers? Each question pertains to three central elements of complexities and these elements are: uncertainty, inequality and unfairness. Simplifying Complexity explains the scientific study of complex cognitive networks, as well as the methods scientists use to parse difficult problems into manageable pieces. Readers are introduced to scientific methodology and thought processes, followed by a discourse on perspectives on the three elements of complexity through concepts such as normal and non-normal statistics, scaling and complexity management. Simplifying Complexity combines basic cognitive science and scientific philosophy for both advanced students (in the fields of sociology, cognitive science, complex networks and change management) and for general readers looking for a more scientific guide to understanding and managing the nature of change in a complex world.

Fractional Order Devices

Author: Karabi Biswas
Publisher: Springer
ISBN: 3319544608
Format: PDF, Mobi
Download Now
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator/derivator is a new one for electronic circuit designers. The book shows how specific non-integer-order impedance elements can be created using materials with specific structural properties. EIS measures the electrical impedance of a specimen across a given range of frequencies, producing a spectrum that represents the variation of the impedance versus frequency – a technique that has the advantage of avoiding aggressive examinations. Biological tissues are complex systems characterized by dynamic processes that occur at different lengths and time scales; this book proposes a model for vegetable tissues that describes the behavior of such materials by considering the interactions among various relaxing phenomena and memory effects.

Fractional Calculus

Author: Richard Herrmann
Publisher: World Scientific
ISBN: 9814340243
Format: PDF, Kindle
Download Now
Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.

Fractional Calculus and Waves in Linear Viscoelasticity

Author: Francesco Mainardi
Publisher: World Scientific
ISBN: 1908978570
Format: PDF, Kindle
Download Now
This monograph provides a comprehensive overview of the author's work on the fields of fractional calculus and waves in linear viscoelastic media, which includes his pioneering contributions on the applications of special functions of the Mittag-Leffler and Wright types. It is intended to serve as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature given in the huge general bibliography. This book is likely to be of interest to applied scientists and engineers. Contents:Essentials of Fractional CalculusEssentials of Linear ViscoelasticityFractional Viscoelastic ModelsWaves in Linear Viscoelastic Media: Dispersion and DissipationWaves in Linear Viscoelastic Media: Asymptotic RepresentationsDiffusion and Wave–Propagation via Fractional CalculusAppendices:The Eulerian FunctionsThe Bessel FunctionsThe Error FunctionsThe Exponential Integral FunctionsThe Mittag-Leffler FunctionsThe Wright Functions Readership: Graduate and PhD students in applied mathematics, classical physics, mechanical engineering and chemical physics; academic institutions; research centers. Keywords:Fractional Calculus;Fractional Derivatives;Fractional Integrals;Linear Viscoelasticity;Rheological Models;Special Functions;Mittag-Leffler Functions;Wright Functions;Integral Transforms;Laplace Transforms;Fourier Transforms;Waves;Dispersion;Dissipation;Diffusion;Anomalous DiffusionKey Features:Contains accessible mathematical language for easy understandingFeatures ample examples to reiterate concepts in the bookMakes extensive use of graphical imagesIncludes a large and informative general bibliography for further research

Complexity

Author: Mitchell M. Waldrop
Publisher: Simon and Schuster
ISBN: 0671872346
Format: PDF, Docs
Download Now
A look at the rebellious thinkers who are challenging old ideas with their insights into the ways countless elements of complex systems interact to produce spontaneous order out of confusion

Probability and Statistics for Computer Scientists Second Edition

Author: Michael Baron
Publisher: CRC Press
ISBN: 1498760600
Format: PDF, ePub, Docs
Download Now
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Fractal Physiology

Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Format: PDF, Docs
Download Now
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.

Functional Fractional Calculus

Author: Shantanu Das
Publisher: Springer Science & Business Media
ISBN: 3642205453
Format: PDF, Mobi
Download Now
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematical and geometrical explanations, but also several practical applications are given particularly for system identification, description and then efficient controls. The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions. Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.” This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.