Fundamental Aspects of Operational Risk and Insurance Analytics

Author: Marcelo G. Cruz
Publisher: John Wiley & Sons
ISBN: 1118573005
Format: PDF, ePub
Download Now
A one-stop guide for the theories, applications, and statistical methodologies essential to operational risk Providing a complete overview of operational risk modeling and relevant insurance analytics, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk offers a systematic approach that covers the wide range of topics in this area. Written by a team of leading experts in the field, the handbook presents detailed coverage of the theories, applications, and models inherent in any discussion of the fundamentals of operational risk, with a primary focus on Basel II/III regulation, modeling dependence, estimation of risk models, and modeling the data elements. Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk begins with coverage on the four data elements used in operational risk framework as well as processing risk taxonomy. The book then goes further in-depth into the key topics in operational risk measurement and insurance, for example diverse methods to estimate frequency and severity models. Finally, the book ends with sections on specific topics, such as scenario analysis; multifactor modeling; and dependence modeling. A unique companion with Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk, the handbook also features: Discussions on internal loss data and key risk indicators, which are both fundamental for developing a risk-sensitive framework Guidelines for how operational risk can be inserted into a firm’s strategic decisions A model for stress tests of operational risk under the United States Comprehensive Capital Analysis and Review (CCAR) program A valuable reference for financial engineers, quantitative analysts, risk managers, and large-scale consultancy groups advising banks on their internal systems, the handbook is also useful for academics teaching postgraduate courses on the methodology of operational risk.

Fundamental Aspects of Operational Risk and Insurance Analytics and Advances in Heavy Tailed Risk Modeling Handbooks of Operational Risk Set

Author: Marcelo G. Cruz
Publisher: Wiley
ISBN: 9781118909577
Format: PDF, ePub, Mobi
Download Now
Two cutting-edge guides for the theories, applications, and statistical methodologies essential to operational risk and heavy tailed risk modeling Focusing on the quantitative aspects of heavy tailed loss processes in operational risk and relevant insurance analytics, Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk presents comprehensive coverage of the latest research on the theories and applications in risk measurement and modeling techniques. Featuring a unique balance of mathematical and statistical perspectives, the handbook begins by introducing the motivation for heavy tailed risk processes in high consequence low frequency loss modeling. With a companion, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk, the book provides a complete framework for all aspects of operational risk management. Fundamental Aspects of Operational Risk and Insurance Analytics covers the theories, applications, and models inherent in any discussion of the fundamentals of operational risk, with a primary focus on Basel II/III regulation, modeling dependence, estimation of risk models, and modeling the data elements.

Extreme Events in Finance

Author: Francois Longin
Publisher: John Wiley & Sons
ISBN: 1118650336
Format: PDF, Docs
Download Now
A guide to the growing importance of extreme value risk theory, methods, and applications in the financial sector Presenting a uniquely accessible guide, Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications features a combination of the theory, methods, and applications of extreme value theory (EVT) in finance and a practical understanding of market behavior including both ordinary and extraordinary conditions. Beginning with a fascinating history of EVTs and financial modeling, the handbook introduces the historical implications that resulted in the applications and then clearly examines the fundamental results of EVT in finance. After dealing with these theoretical results, the handbook focuses on the EVT methods critical for data analysis. Finally, the handbook features the practical applications and techniques and how these can be implemented in financial markets. Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications includes: • Over 40 contributions from international experts in the areas of finance, statistics, economics, business, insurance, and risk management • Topical discussions on univariate and multivariate case extremes as well as regulation in financial markets • Extensive references in order to provide readers with resources for further study • Discussions on using R packages to compute the value of risk and related quantities The book is a valuable reference for practitioners in financial markets such as financial institutions, investment funds, and corporate treasuries, financial engineers, quantitative analysts, regulators, risk managers, large-scale consultancy groups, and insurers. Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications is also a useful textbook for postgraduate courses on the methodology of EVTs in finance. François Longin, PhD, is Professor in the Department of Finance at ESSEC Business School, France. He has been working on the applications of extreme value theory to financial markets for many years, and his research has been applied by financial institutions in the risk management area including market, credit, and operational risks. His research works can be found in scientific journals such as The Journal of Finance. Dr. Longin is currently a financial consultant with expertise covering risk management for financial institutions and portfolio management for asset management firms.

Advances in Heavy Tailed Risk Modeling

Author: Gareth W. Peters
Publisher: John Wiley & Sons
ISBN: 1118909542
Format: PDF
Download Now
A cutting-edge guide for the theories, applications, and statistical methodologies essential to heavy tailed risk modeling Focusing on the quantitative aspects of heavy tailed loss processes in operational risk and relevant insurance analytics, Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk presents comprehensive coverage of the latest research on the theories and applications in risk measurement and modeling techniques. Featuring a unique balance of mathematical and statistical perspectives, the handbook begins by introducing the motivation for heavy tailed risk processes in high consequence low frequency loss modeling. With a companion, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk, the book provides a complete framework for all aspects of operational risk management and includes: Clear coverage on advanced topics such as splice loss models, extreme value theory, heavy tailed closed form loss distributional approach models, flexible heavy tailed risk models, risk measures, and higher order asymptotic approximations of risk measures for capital estimation An exploration of the characterization and estimation of risk and insurance modelling, which includes sub-exponential models, alpha-stable models, and tempered alpha stable models An extended discussion of the core concepts of risk measurement and capital estimation as well as the details on numerical approaches to evaluation of heavy tailed loss process model capital estimates Numerous detailed examples of real-world methods and practices of operational risk modeling used by both financial and non-financial institutions Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk is an excellent reference for risk management practitioners, quantitative analysts, financial engineers, and risk managers. The book is also a useful handbook for graduate-level courses on heavy tailed processes, advanced risk management, and actuarial science.

Handbook of High Frequency Trading and Modeling in Finance

Author: Ionut Florescu
Publisher: John Wiley & Sons
ISBN: 1118593324
Format: PDF, Kindle
Download Now
Reflecting the fast pace and ever-evolving nature of the financial industry, the Handbook of High-Frequency Trading and Modeling in Finance details how high-frequency analysis presents new systematic approaches to implementing quantitative activities with high-frequency financial data. Introducing new and established mathematical foundations necessary to analyze realistic market models and scenarios, the handbook begins with a presentation of the dynamics and complexity of futures and derivatives markets as well as a portfolio optimization problem using quantum computers. Subsequently, the handbook addresses estimating complex model parameters using high-frequency data. Finally, the handbook focuses on the links between models used in financial markets and models used in other research areas such as geophysics, fossil records, and earthquake studies. The Handbook of High-Frequency Trading and Modeling in Finance also features: • Contributions by well-known experts within the academic, industrial, and regulatory fields • A well-structured outline on the various data analysis methodologies used to identify new trading opportunities • Newly emerging quantitative tools that address growing concerns relating to high-frequency data such as stochastic volatility and volatility tracking; stochastic jump processes for limit-order books and broader market indicators; and options markets • Practical applications using real-world data to help readers better understand the presented material The Handbook of High-Frequency Trading and Modeling in Finance is an excellent reference for professionals in the fields of business, applied statistics, econometrics, and financial engineering. The handbook is also a good supplement for graduate and MBA-level courses on quantitative finance, volatility, and financial econometrics. Ionut Florescu, PhD, is Research Associate Professor in Financial Engineering and Director of the Hanlon Financial Systems Laboratory at Stevens Institute of Technology. His research interests include stochastic volatility, stochastic partial differential equations, Monte Carlo Methods, and numerical methods for stochastic processes. Dr. Florescu is the author of Probability and Stochastic Processes, the coauthor of Handbook of Probability, and the coeditor of Handbook of Modeling High-Frequency Data in Finance, all published by Wiley. Maria C. Mariani, PhD, is Shigeko K. Chan Distinguished Professor in Mathematical Sciences and Chair of the Department of Mathematical Sciences at The University of Texas at El Paso. Her research interests include mathematical finance, applied mathematics, geophysics, nonlinear and stochastic partial differential equations and numerical methods. Dr. Mariani is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley. H. Eugene Stanley, PhD, is William Fairfield Warren Distinguished Professor at Boston University. Stanley is one of the key founders of the new interdisciplinary field of econophysics, and has an ISI Hirsch index H=128 based on more than 1200 papers. In 2004 he was elected to the National Academy of Sciences. Frederi G. Viens, PhD, is Professor of Statistics and Mathematics and Director of the Computational Finance Program at Purdue University. He holds more than two dozen local, regional, and national awards and he travels extensively on a world-wide basis to deliver lectures on his research interests, which range from quantitative finance to climate science and agricultural economics. A Fellow of the Institute of Mathematics Statistics, Dr. Viens is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley.

Analytics for Insurance

Author: Tony Boobier
Publisher: John Wiley & Sons
ISBN: 1119141087
Format: PDF
Download Now
The business guide to Big Data in insurance, with practical application insight Big Data and Analytics for Insurers is the industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. Written from a non-IT perspective, this book focusses less on the architecture and technical details, instead providing practical guidance on translating analytics into target delivery. The discussion examines implementation, interpretation, and application to show you what Big Data can do for your business, with insights and examples targeted specifically to the insurance industry. From fraud analytics in claims management, to customer analytics, to risk analytics in Solvency 2, comprehensive coverage presented in accessible language makes this guide an invaluable resource for any insurance professional. The insurance industry is heavily dependent on data, and the advent of Big Data and analytics represents a major advance with tremendous potential – yet clear, practical advice on the business side of analytics is lacking. This book fills the void with concrete information on using Big Data in the context of day-to-day insurance operations and strategy. Understand what Big Data is and what it can do Delve into Big Data's specific impact on the insurance industry Learn how advanced analytics can revolutionise the industry Bring Big Data out of IT and into strategy, management, marketing, and more Big Data and analytics is changing business – but how? The majority of Big Data guides discuss data collection, database administration, advanced analytics, and the power of Big Data – but what do you actually do with it? Big Data and Analytics for Insurers answers your questions in real, everyday business terms, tailored specifically to the insurance industry's unique needs, challenges, and targets.

Handbook of Volatility Models and Their Applications

Author: Luc Bauwens
Publisher: John Wiley & Sons
ISBN: 1118272056
Format: PDF, ePub, Mobi
Download Now
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 1118448960
Format: PDF
Download Now
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

The Handbook of Hybrid Securities

Author: Jan De Spiegeleer
Publisher: John Wiley & Sons
ISBN: 1118450027
Format: PDF, ePub, Docs
Download Now
Introducing a revolutionary new quantitative approach to hybrid securities valuation and risk management To an equity trader they are shares. For the trader at the fixed income desk, they are bonds (after all, they pay coupons, so what's the problem?). They are hybrid securities. Neither equity nor debt, they possess characteristics of both, and carry unique risks that cannot be ignored, but are often woefully misunderstood. The first and only book of its kind, The Handbook of Hybrid Securities dispels the many myths and misconceptions about hybrid securities and arms you with a quantitative, practical approach to dealing with them from a valuation and risk management point of view. Describes a unique, quantitative approach to hybrid valuation and risk management that uses new structural and multi-factor models Provides strategies for the full range of hybrid asset classes, including convertible bonds, preferreds, trust preferreds, contingent convertibles, bonds labeled "additional Tier 1," and more Offers an expert review of current regulatory climate regarding hybrids, globally, and explores likely political developments and their potential impact on the hybrid market The most up-to-date, in-depth book on the subject, this is a valuable working resource for traders, analysts and risk managers, and a indispensable reference for regulators

Coping with Risk in Agriculture 3rd Edition

Author: J Brian Hardaker
Publisher: CABI
ISBN: 1780645740
Format: PDF, Mobi
Download Now
Risk and uncertainty are inescapable factors in agriculture which require careful management. Farmers face production risks from the weather, crop and livestock performance, and pests and diseases, as well as institutional, personal and business risks. This revised third edition of the popular textbook includes updated chapters on theory and methods and contains a new chapter discussing the state-contingent approach to the analysis of production and the use of copulas to better model stochastic dependency. Aiming to introduce agricultural decision making, probability and risk preference, this book is an indispensable guide for students and researchers of agriculture and agribusiness management.