Fundamental Number Theory with Applications Second Edition

Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 9781420066616
Format: PDF, ePub, Docs
Download Now
An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition • Removal of all advanced material to be even more accessible in scope • New fundamental material, including partition theory, generating functions, and combinatorial number theory • Expanded coverage of random number generation, Diophantine analysis, and additive number theory • More applications to cryptography, primality testing, and factoring • An appendix on the recently discovered unconditional deterministic polynomial-time algorithm for primality testing Taking a truly elementary approach to number theory, this text supplies the essential material for a first course on the subject. Placed in highlighted boxes to reduce distraction from the main text, nearly 70 biographies focus on major contributors to the field. The presentation of over 1,300 entries in the index maximizes cross-referencing so students can find data with ease.

Fundamental Number Theory with Applications

Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 9780849339875
Format: PDF, Docs
Download Now
Beginning with the arithmetic of the rational integers and proceeding to an introduction of algebraic number theory via quadratic orders, Fundamental Number Theory with Applications reveals intriguing new applications of number theory. This text details aspects of computer science related to cryptography factoring primality testing complexity analysis computer arithmetic computational number theory Fundamental Number Theory with Applications also covers: Carmichael numbers Dirichlet products Jacobsthal sums Mersenne primes perfect numbers powerful numbers self-contained numbers Numerous exercises are included, testing the reader's knowledge of the concepts covered, introducing new and interesting topics, and providing a venue to learn background material. Written by a professor and author who is an accomplished scholar in this field, this book provides the material essential for an introduction to the fundamentals of number theory.

Algebraic Number Theory Second Edition

Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1439845999
Format: PDF, Kindle
Download Now
Bringing the material up to date to reflect modern applications, Algebraic Number Theory, Second Edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. This edition focuses on integral domains, ideals, and unique factorization in the first chapter; field extensions in the second chapter; and class groups in the third chapter. Applications are now collected in chapter four and at the end of chapter five, where primality testing is highlighted as an application of the Kronecker–Weber theorem. In chapter five, the sections on ideal decomposition in number fields have been more evenly distributed. The final chapter continues to cover reciprocity laws. New to the Second Edition Reorganization of all chapters More complete and involved treatment of Galois theory A study of binary quadratic forms and a comparison of the ideal and form class groups More comprehensive section on Pollard’s cubic factoring algorithm More detailed explanations of proofs, with less reliance on exercises, to provide a sound understanding of challenging material The book includes mini-biographies of notable mathematicians, convenient cross-referencing, a comprehensive index, and numerous exercises. The appendices present an overview of all the concepts used in the main text, an overview of sequences and series, the Greek alphabet with English transliteration, and a table of Latin phrases and their English equivalents. Suitable for a one-semester course, this accessible, self-contained text offers broad, in-depth coverage of numerous applications. Readers are lead at a measured pace through the topics to enable a clear understanding of the pinnacles of algebraic number theory.

Elliptic Curves

Author: Lawrence C. Washington
Publisher: CRC Press
ISBN: 9781420071474
Format: PDF, Kindle
Download Now
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.

Advanced Number Theory with Applications

Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 9781420083293
Format: PDF, ePub
Download Now
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and more than 1,500 entries in the index so that students can easily cross-reference and find the appropriate data. With numerous examples throughout, the text begins with coverage of algebraic number theory, binary quadratic forms, Diophantine approximation, arithmetic functions, p-adic analysis, Dirichlet characters, density, and primes in arithmetic progression. It then applies these tools to Diophantine equations, before developing elliptic curves and modular forms. The text also presents an overview of Fermat’s Last Theorem (FLT) and numerous consequences of the ABC conjecture, including Thue–Siegel–Roth theorem, Hall’s conjecture, the Erdös–Mollin-–Walsh conjecture, and the Granville–Langevin Conjecture. In the appendix, the author reviews sieve methods, such as Eratothesenes’, Selberg’s, Linnik’s, and Bombieri’s sieves. He also discusses recent results on gaps between primes and the use of sieves in factoring. By focusing on salient techniques in number theory, this textbook provides the most up-to-date and comprehensive material for a second course in this field. It prepares students for future study at the graduate level.

An Introduction to Cryptography Second Edition

Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1420011243
Format: PDF, ePub, Mobi
Download Now
Continuing a bestselling tradition, An Introduction to Cryptography, Second Edition provides a solid foundation in cryptographic concepts that features all of the requisite background material on number theory and algorithmic complexity as well as a historical look at the field. With numerous additions and restructured material, this edition presents the ideas behind cryptography and the applications of the subject. The first chapter provides a thorough treatment of the mathematics necessary to understand cryptography, including number theory and complexity, while the second chapter discusses cryptographic fundamentals, such as ciphers, linear feedback shift registers, modes of operation, and attacks. The next several chapters discuss DES, AES, public-key cryptography, primality testing, and various factoring methods, from classical to elliptical curves. The final chapters are comprised of issues pertaining to the Internet, such as pretty good privacy (PGP), protocol layers, firewalls, and cookies, as well as applications, including login and network security, viruses, smart cards, and biometrics. The book concludes with appendices on mathematical data, computer arithmetic, the Rijndael S-Box, knapsack ciphers, the Silver-Pohlig-Hellman algorithm, the SHA-1 algorithm, radix-64 encoding, and quantum cryptography. New to the Second Edition: An introductory chapter that provides more information on mathematical facts and complexity theory Expanded and updated exercises sets, including some routine exercises More information on primality testing and cryptanalysis Accessible and logically organized, An Introduction to Cryptography, Second Edition is the essential book on the fundamentals of cryptography.

A Beginner s Guide to Discrete Mathematics

Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 9780817682866
Format: PDF, Mobi
Download Now
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.

Discrete Mathematics with Applications

Author: Thomas Koshy
Publisher: Elsevier
ISBN: 9780080477343
Format: PDF, ePub, Mobi
Download Now
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation. * Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations * Weaves numerous applications into the text * Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects * Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises * Features interesting anecdotes and biographies of 60 mathematicians and computer scientists * Instructor's Manual available for adopters * Student Solutions Manual available separately for purchase (ISBN: 0124211828)

Introduction to Cryptography with Open Source Software

Author: Alasdair McAndrew
Publisher: CRC Press
ISBN: 1439825718
Format: PDF, ePub, Docs
Download Now
Once the privilege of a secret few, cryptography is now taught at universities around the world. Introduction to Cryptography with Open-Source Software illustrates algorithms and cryptosystems using examples and the open-source computer algebra system of Sage. The author, a noted educator in the field, provides a highly practical learning experience by progressing at a gentle pace, keeping mathematics at a manageable level, and including numerous end-of-chapter exercises. Focusing on the cryptosystems themselves rather than the means of breaking them, the book first explores when and how the methods of modern cryptography can be used and misused. It then presents number theory and the algorithms and methods that make up the basis of cryptography today. After a brief review of "classical" cryptography, the book introduces information theory and examines the public-key cryptosystems of RSA and Rabin’s cryptosystem. Other public-key systems studied include the El Gamal cryptosystem, systems based on knapsack problems, and algorithms for creating digital signature schemes. The second half of the text moves on to consider bit-oriented secret-key, or symmetric, systems suitable for encrypting large amounts of data. The author describes block ciphers (including the Data Encryption Standard), cryptographic hash functions, finite fields, the Advanced Encryption Standard, cryptosystems based on elliptical curves, random number generation, and stream ciphers. The book concludes with a look at examples and applications of modern cryptographic systems, such as multi-party computation, zero-knowledge proofs, oblivious transfer, and voting protocols.