Fundamentals of Artificial Neural Networks

Author: Mohamad H. Hassoun
Publisher: MIT Press
ISBN: 9780262082396
Format: PDF, ePub
Download Now
Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4

Fundamentals of Artificial Neural Networks

Author: Mohamad H. Hassoun
Publisher: Bradford Books
ISBN: 9780262514675
Format: PDF, ePub, Mobi
Download Now
Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4

Elements of Artificial Neural Networks

Author: Kishan Mehrotra
Publisher: MIT Press
ISBN: 9780262133289
Format: PDF, ePub
Download Now
Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.

Neural Smithing

Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Format: PDF, Kindle
Download Now
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition).This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Mathematical Methods for Neural Network Analysis and Design

Author: Richard M. Golden
Publisher: MIT Press
ISBN: 9780262071741
Format: PDF, ePub
Download Now
This graduate-level text teaches students how to use a small number of powerful mathematical tools for analyzing and designing a wide variety of artificial neural network (ANN) systems, including their own customized neural networks. Mathematical Methods for Neural Network Analysis and Design offers an original, broad, and integrated approach that explains each tool in a manner that is independent of specific ANN systems. Although most of the methods presented are familiar, their systematic application to neural networks is new. Included are helpful chapter summaries and detailed solutions to over 100 ANN system analysis and design problems. For convenience, many of the proofs of the key theorems have been rewritten so that the entire book uses a relatively uniform notion. This text is unique in several ways. It is organized according to categories of mathematical tools—for investigating the behavior of an ANN system, for comparing (and improving) the efficiency of system computations, and for evaluating its computational goals— that correspond respectively to David Marr's implementational, algorithmic, and computational levels of description. And instead of devoting separate chapters to different types of ANN systems, it analyzes the same group of ANN systems from the perspective of different mathematical methodologies. A Bradford Book

Principles of Artificial Neural Networks

Author: Daniel Graupe
Publisher: World Scientific
ISBN: 9814522740
Format: PDF
Download Now
Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."

Foundations of Neural Networks Fuzzy Systems and Knowledge Engineering

Author: Nikola K. Kasabov
Publisher: Marcel Alencar
ISBN: 0262112124
Format: PDF, Mobi
Download Now
Neural networks and fuzzy systems are different approaches to introducing human-like reasoning into expert systems. This text is the first to combine the study of these two subjects, their basics and their use, along with symbolic AI methods to build comprehensive artificial intelligence systems. In a clear and accessible style, Kasabov describes rule- based and connectionist techniques and then their combinations, with fuzzy logic included, showing the application of the different techniques to a set of simple prototype problems, which makes comparisons possible. A particularly strong feature of the text is that it is filled with applications in engineering, business, and finance. AI problems that cover most of the application-oriented research in the field (pattern recognition, speech and image processing, classification, planning, optimization, prediction, control, decision making, and game simulations) are discussed and illustrated with concrete examples. Intended both as a text for advanced undergraduate and postgraduate students as well as a reference for researchers in the field of knowledge engineering, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering has chapters structured for various levels of teaching and includes original work by the author along with the classic material. Data sets for the examples in the book as well as an integrated software environment that can be used to solve the problems and do the exercises at the end of each chapter are available free through anonymous ftp.

Talking Nets

Author: James A. Anderson
Publisher: MIT Press
ISBN: 9780262511117
Format: PDF, Mobi
Download Now
Since World War II, a group of scientists has been attempting to understand the human nervous system and to build computer systems that emulate the brain's abilities. Many of the early workers in this field of neural networks came from cybernetics; others came from neuroscience, physics, electrical engineering, mathematics, psychology, even economics. In this collection of interviews, those who helped to shape the field share their childhood memories, their influences, how they became interested in neural networks, and what they see as its future. The subjects tell stories that have been told, referred to, whispered about, and imagined throughout the history of the field. Together, the interviews form a Rashomon-like web of reality. Some of the mythic people responsible for the foundations of modern brain theory and cybernetics, such as Norbert Wiener, Warren McCulloch, and Frank Rosenblatt, appear prominently in the recollections. The interviewees agree about some things and disagree about more. Together, they tell the story of how science is actually done, including the false starts, and the Darwinian struggle for jobs, resources, and reputation. Although some of the interviews contain technical material, there is no actual mathematics in the book. Contributors: James A. Anderson, Michael Arbib, Gail Carpenter, Leon Cooper, Jack Cowan, Walter Freeman, Stephen Grossberg, Robert Hecht-Neilsen, Geoffrey Hinton, Teuvo Kohonen, Bart Kosko, Jerome Lettvin, Carver Mead, David Rumelhart, Terry Sejnowski, Paul Werbos, Bernard Widrow.

Deep Learning

Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Format: PDF, Kindle
Download Now
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.