Maschinelles Lernen

Author: Ethem Alpaydın
Publisher: Oldenbourg Verlag
ISBN: 9783486581140
Format: PDF, Kindle
Download Now
Unter maschinellem Lernen versteht man die kunstliche Generierung von Wissen aus Erfahrung. Das vorliegende Buch diskutiert Methoden aus den Bereichen Statistik, Mustererkennung etc. und versucht, die unterschiedlichen Ansatze zu kombinieren, um moglichst effiziente Losungen zu finden."

Neuronale Netze selbst programmieren

Author: Tariq Rashid
Publisher: O'Reilly
ISBN: 3960101031
Format: PDF
Download Now
Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Data Science f r Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 352780675X
Format: PDF, Docs
Download Now
Daten, Daten, Daten ?, Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensï¿1⁄2tze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafï¿1⁄2r notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So kï¿1⁄2nnen Sie die Erkenntnisse dieses Buches auf Ihre Daten ï¿1⁄2bertragen und aus deren Analyse unmittelbare Schlï¿1⁄2sse und Konsequenzen ziehen.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Format: PDF
Download Now
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Proaktives ereignisgesteuertes Gesch ftsprozessmanagement

Author: Julian Krumeich
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832546480
Format: PDF, ePub
Download Now
Die Digitalisierung ermöglicht feingranulare Datenströme in betrieblichen Abläufen zu erfassen. Mittels moderner Analyseverfahren, wie dem Complex Event Processing (CEP), können relevante Ereignismuster hieraus identifiziert und korrespondierende Maßnahmen unverzüglich initiiert werden. Vielversprechend erweist sich, zukünftige Geschäftsereignisse zu prognostizierten und hierdurch eine proaktive Steuerung von Unternehmensabläufen zu realisieren. Hierzu muss eine Kombination aus CEP und prädiktiven Analysen in die operativen Entscheidungs- und Steuerungsprozesse verankert werden. Dies bedingt einen Veränderungsprozess in Unternehmen und somit die Integration in das Geschäftsprozessmanagement. Das von Julian Krumeich konstruierte Referenzmodell dient als Gestaltungsvorlage für die Realisierung eines proaktiven ereignisgesteuerten Geschäftsprozessmanagements. Das Modell umfasst Komponenten zur Modellierung von komplexen Ereignismustern sowie deren automatisierten Transformation in EPL-Spezifikationen. Zudem ermöglicht ein methodisches Vorgehen, Prognosepotenziale in Geschäftsprozessen zu identifizieren, um auf dieser Grundlage reaktive Prozesse durch die Einbettung proaktiver Bestandteile in proaktive Prozesse zu transformieren. Die Praxistauglichkeit des Referenzmodells wird anhand eines Anwendungsbeispiels aus der Stahlproduktion validiert und die Umsetzbarkeit durch Prototypen unterstrichen. Dieses Buch erweist sich nicht nur für Wissenschaftler von Interesse, sondern dient auch Lesern aus der Unternehmenspraxis als Impulsgeber zur Bewältigung der notwendigen Transformation ihrer Geschäftsprozesse.

Leben 3 0

Author: Max Tegmark
Publisher: Ullstein Buchverlage
ISBN: 3843716706
Format: PDF, Docs
Download Now
Die Nobelpreis-Schmiede Massachusetts Institute of Technology ist der bedeutendste technologische Think Tank der USA. Dort arbeitet Professor Max Tegmark mit den weltweit führenden Entwicklern künstlicher Intelligenz zusammen, die ihm exklusive Einblicke in ihre Labors gewähren. Die Erkenntnisse, die er daraus zieht, sind atemberaubend und zutiefst verstörend zugleich. Neigt sich die Ära der Menschen dem Ende zu? Der Physikprofessor Max Tegmark zeigt anhand der neusten Forschung, was die Menschheit erwartet. Hier eine Auswahl möglicher Szenarien: - Eroberer: Künstliche Intelligenz übernimmt die Macht und entledigt sich der Menschheit mit Methoden, die wir noch nicht einmal verstehen. - Der versklavte Gott: Die Menschen bemächtigen sich einer superintelligenten künstlichen Intelligenz und nutzen sie, um Hochtechnologien herzustellen. - Umkehr: Der technologische Fortschritt wird radikal unterbunden und wir kehren zu einer prä-technologischen Gesellschaft im Stil der Amish zurück. - Selbstzerstörung: Superintelligenz wird nicht erreicht, weil sich die Menschheit vorher nuklear oder anders selbst vernichtet. - Egalitäres Utopia: Es gibt weder Superintelligenz noch Besitz, Menschen und kybernetische Organismen existieren friedlich nebeneinander. Max Tegmark bietet kluge und fundierte Zukunftsszenarien basierend auf seinen exklusiven Einblicken in die aktuelle Forschung zur künstlichen Intelligenz.