Fundamentals of Mechanics of Robotic Manipulation

Author: marco ceccarelli
Publisher: Springer Science & Business Media
ISBN: 1402021100
Format: PDF, ePub, Mobi
Download Now
This book has evolved from a course on Mechanics of Robots that the author has thought for over a dozen years at the University of Cassino at Cassino, Italy. It is addressed mainly to graduate students in mechanical engineering although the course has also attracted students in electrical engineering. The purpose of the book consists of presenting robots and robotized systems in such a way that they can be used and designed for industrial and innovative non-industrial applications with no great efforts. The content of the book has been kept at a fairly practical level with the aim to teach how to model, simulate, and operate robotic mechanical systems. The chapters have been written and organized in a way that they can be red even separately, so that they can be used separately for different courses and readers. However, many advanced concepts are briefly explained and their use is empathized with illustrative examples. Therefore, the book is directed not only to students but also to robot users both from practical and theoretical viewpoints. In fact, topics that are treated in the book have been selected as of current interest in the field of Robotics. Some of the material presented is based upon the author’s own research in the field since the late 1980’s.

Mechanics of Robotic Manipulation

Author:
Publisher: MIT Press
ISBN: 9780262263740
Format: PDF
Download Now
"Manipulation" refers to a variety of physical changes made to the world around us. Mechanics of Robotic Manipulation addresses one form of robotic manipulation, moving objects, and the various processes involved -- grasping, carrying, pushing, dropping, throwing, and so on. Unlike most books on the subject, it focuses on manipulation rather than manipulators. This attention to processes rather than devices allows a more fundamental approach, leading to results that apply to a broad range of devices, not just robotic arms.The book draws both on classical mechanics and on classical planning, which introduces the element of imperfect information. The book does not propose a specific solution to the problem of manipulation, but rather outlines a path of inquiry.

Modern Robotics

Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Format: PDF, ePub
Download Now
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Foundations of Robotics

Author: Tsuneo Yoshikawa
Publisher: MIT Press
ISBN: 9780262240284
Format: PDF, Docs
Download Now
Foundations of Robotics presents the fundamental concepts and methodologies for the analysis, design, and control of robot manipulators. It explains the physical meaning of the concepts and equations used, and it provides, in an intuitively clear way, the necessary background in kinetics, linear algebra, and control theory. Illustrative examples appear throughout. The author begins by discussing typical robot manipulator mechanisms and their controllers. He then devotes three chapters to the analysis of robot manipulator mechanisms. He covers the kinematics of robot manipulators, describing the motion of manipulator links and objects related to manipulation. A chapter on dynamics includes the derivation of the dynamic equations of motion, their use for control and simulation and the identification of inertial parameters. The final chapter develops the concept of manipulability. The second half focuses on the control of robot manipulators. Various position-control algorithms that guide the manipulator's end effector along a desired trajectory are described Two typical methods used to control the contact force between the end effector and its environments are detailed For manipulators with redundant degrees of freedom, a technique to develop control algorithms for active utilization of the redundancy is described. Appendixes give compact reviews of the function atan2, pseudo inverses, singular-value decomposition, and Lyapunov stability theory. Tsuneo Yoshikawa teaches in the Division of Applied Systems Science in Kyoto University's Faculty of Engineering.

Fundamentals in Modeling and Control of Mobile Manipulators

Author: Zhijun Li
Publisher: CRC Press
ISBN: 1466580429
Format: PDF, Kindle
Download Now
Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design. However, advances in nonlinear system analysis and control system design offer powerful tools and concepts for the control of mobile manipulator systems. Fundamentals in Modeling and Control of Mobile Manipulators presents a thorough theoretical treatment of several fundamental problems for mobile robotic manipulators. The book integrates fresh concepts and state-of-the-art results to systematically examine kinematics and dynamics, motion generation, feedback control, coordination, and cooperation. From this treatment, the authors form a basic theoretical framework for a mobile robotic manipulator that extends the theory of nonlinear control and applies to more realistic problems. Drawing on their research over the past ten years, the authors propose novel control theory concepts and techniques to tackle key problems. Topics covered include kinematic and dynamic modeling, control of nonholonomic systems, path planning that considers motion and manipulation, hybrid motion/force control and hybrid position/force control where the mobile manipulator is required to interact with environments, and coordination and cooperation strategies for multiple mobile manipulators. The book also includes practical examples of applications in engineering systems. This timely book investigates important scientific and engineering issues for researchers and engineers working with either single or multiple mobile manipulators for larger operational space, better cooperation, and improved productivity.

Fundamentals of Robotic Mechanical Systems

Author: Jorge Angeles
Publisher: Springer Science & Business Media
ISBN: 3319018515
Format: PDF, Kindle
Download Now
The 4th edition includes updated and additional examples and exercises on the core fundamental concepts of mechanics, robots, and kinematics of serial robots. New images of CAD models and physical robots help to motivate concepts being introduced. Each chapter of the book can be read independently of others as it addresses a seperate issue in robotics.

Geometrical Methods in Robotics

Author: J.M. Selig
Publisher: Springer Science & Business Media
ISBN: 1475724845
Format: PDF, Mobi
Download Now
The main aim of this book is to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. These topics seem to be quite fashionable at the moment, but most of the robotics books that touch on these topics tend to treat Lie groups as little more than a fancy notation. I hope to show the power and elegance of these methods as they apply to problems in robotics. A subsidiary aim of the book is to reintroduce some old ideas by describing them in modem notation, particularly Study's Quadric-a description of the group of rigid motions in three dimensions as an algebraic variety (well, actually an open subset in an algebraic variety)-as well as some of the less well known aspects of Ball's theory of screws. In the first four chapters, a careful exposition of the theory of Lie groups and their Lie algebras is given. Except for the simplest examples, all examples used to illustrate these ideas are taken from robotics. So, unlike most standard texts on Lie groups, emphasis is placed on a group that is not semi-simple-the group of proper Euclidean motions in three dimensions. In particular, the continuous subgroups of this group are found, and the elements of its Lie algebra are identified with the surfaces of the lower Reuleaux pairs. These surfaces were first identified by Reuleaux in the latter half of the 19th century.

Dynamics of Manipulation Robots

Author: M. Vukobratovic
Publisher: Springer Science & Business Media
ISBN: 3642818544
Format: PDF, ePub, Docs
Download Now
This monograph represents the first book of the series entitled "SCI ENTIFIC FUNDAMENTALS OF ROBOTICS". The aim of this monograph is to ap proach the dynamics of active mechanisms from the standpoint of its application to the synthesis of complex motion and computer-aided de sign of manipulation mechanisms with some optimal performances. The rapid development of a new class of mechanisms, which may be referred to as active mechanisms, contributed to their application in various environments (from underwater to cosmic) . Because of some specific fea tures, these mechanisms require very careful description, both in a mechanical sense (kinematic and dynamic) and in the synthesis of algo rithms for precise tracking of the above motion under insufficiently defined operating conditions. Having also in mind the need for a very fast (even real-time) calculation of system dynamics and for eliminating, in principle, the errors made when forming mathematical models "by hand" this monograph will primarily present methods for automatic for mUlation of dynamic equations of motion of active spatial mechanisms. Apart from these computer-oriented methods, mention will be made of all those methods which have preceded the computer-oriented procedures, predominantly developed for different problems of rigid body dynamics. If we wish to systematically establish the origins of the scientific discipline, which could be called robot dynamics, we must recall some groups and individuals, who, by solving actual problems in the synthe sis and control of artificial motion, have contributed to a gradual formation of this discipline.

Robotics

Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1846286417
Format: PDF, ePub, Mobi
Download Now
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.

Robot Analysis

Author: Lung-Wen Tsai
Publisher: John Wiley & Sons
ISBN: 9780471325932
Format: PDF
Download Now
Complete, state–of–the–art coverage of robot analysis This unique book provides the fundamental knowledge needed for understanding the mechanics of both serial and parallel manipulators. Presenting fresh and authoritative material on parallel manipulators that is not available in any other resource, it offers an in–depth treatment of position analysis, Jacobian analysis, statics and stiffness analysis, and dynamical analysis of both types of manipulators, including a discussion of industrial and research applications. It also features: ∗ The homotopy continuation method and dialytic elimination method for solving polynomial systems that apply to robot kinematics ∗ Numerous worked examples and problems to reinforce learning ∗ An extensive bibliography offering many resources for more advanced study Drawing on Dr. Lung–Wen Tsai′s vast experience in the field as well as recent research publications, Robot Analysis is a first–rate text for upper–level undergraduate and graduate students in mechanical engineering, electrical engineering, and computer studies, as well as an excellent desktop reference for robotics researchers working in industry or in government.