Fundamentals of Medical Ultrasonics

Author: Michiel Postema
Publisher: CRC Press
ISBN: 1482266644
Format: PDF, ePub
Download Now
Ultrasonic imaging is an economic, reliable diagnostic technique. Owing to recent therapeutic applications, understanding the physical principles of medical ultrasonics is becoming increasingly important. Covering the basics of elasticity, linear acoustics, wave propagation, nonlinear acoustics, transducer components, ultrasonic imaging modes, basics on cavitation and bubble physics, as well as the most common diagnostic and therapeutic applications, Fundamentals of Medical Ultrasonics explores the physical and engineering principles of acoustics and ultrasound as used for medical applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

Ultrasonics

Author: Dale Ensminger
Publisher: CRC Press
ISBN: 0824758897
Format: PDF
Download Now
Recent advances in power electronics greatly benefit the multidisciplinary field of modern ultrasonics. More powerful, compact, and versatile electronic chips and software enable new computer-based devices for real-time data capture, storage, analysis, and display and advance the science and technology employed in commercial systems and applications of ultrasound. Reviewing the scientific basis behind these improvements, Ultrasonics: Fundamentals, Technologies, and Applications, Third Edition discusses them in detail, with new and additional figures and references, offering a completely revised and expanded examination of the state of modern ultrasonics. This new edition of a bestselling industry reference discusses the full breadth of ultrasonics applications for industrial and medical use and provides the fundamentals and insights gathered over the authors’ collective 80 years in the field. It provides a unique and comprehensive treatment of the science and technology behind the latest advancements and applications in both low and high power implementations. Coverage combines fundamental physics, a review and analysis of sensors and transducers, and the systems required for the full spectrum of industrial, nondestructive testing and medical and biomedical uses. It includes citations of numerous references and covers both main stream and the more unusual and obscure applications of ultrasound. Ultrasonics is ubiquitous in its industrial applications for sensing, NDT, and process measurements, in high power forms for processing and sonochemistry, as well as in medical procedures where it is used for diagnosis, therapy and surgery. This book provides a complete overview of the field, presenting numerous applications, cutting-edge advancements and improvements, additional figures and references, and a look at future directions.

Foundations of Biomedical Ultrasound

Author: Richard S. C. Cobbold
Publisher: Oxford University Press
ISBN: 9780199775125
Format: PDF, Docs
Download Now
Foundations of Biomedical Ultrasound provides a thorough and detailed treatment of the underlying physics and engineering of medical ultrasound practices. It covers the fundamental engineering behind ultrasound equipment, properties of acoustic wave motion, the behavior of waves in various media, non-linear waves and the creation of images. The most comprehensive book on the subject, Foundations of Biomedical Ultrasound is an indispensable reference for any medical professional working with ultrasound imaging, and a comprehensive introduction to the subject for students. The author has been researching and teaching biomedical ultrasonics at the University of Toronto for the past 25 years.

Fundamentals of Medical Imaging

Author: Paul Suetens
Publisher: Cambridge University Press
ISBN: 0521519152
Format: PDF, Mobi
Download Now
Comprehensive, highly illustrated text and website giving underlying mathematical and physical basis of each imaging modality, for scientists and clinicians.

Fundamentals and Applications of Ultrasonic Waves Second Edition

Author: J. David N. Cheeke
Publisher: CRC Press
ISBN: 1351833197
Format: PDF, Mobi
Download Now
Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.

Fundamentals of Ultrasonic Phased Arrays

Author: Lester W. Schmerr Jr.
Publisher: Springer
ISBN: 3319072722
Format: PDF, Mobi
Download Now
This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements. The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and seismology communities. A unique feature of this book is that it presents a unified theory of imaging with phased arrays that shows how common imaging methods such as the synthetic aperture focusing technique (SAFT), the total focusing method (TFM), and the physical optics far field inverse scattering (POFFIS) imaging method are all simplified versions of more fundamental and quantitative imaging approaches, called imaging measurement models. To enhance learning, this book first describes the fundamentals of phased array systems using 2-D models, so that the complex 3-D cases normally found in practice can be more easily understood. In addition to giving a detailed discussion of phased array systems, Fundamentals of Ultrasonic Phased Arrays also provides MATLAB® functions and scripts, allowing the reader to conduct simulations of ultrasonic phased array transducers and phased array systems with the latest modeling technology.

Principles and Applications of Therapeutic Ultrasound in Healthcare

Author: Yufeng Zhou
Publisher: CRC Press
ISBN: 1466510285
Format: PDF, Docs
Download Now
Principles and Applications of Therapeutic Ultrasound in Healthcare introduces concepts, principles, construction, and applications of therapeutic ultrasound: from bench to bedside. A comprehensive examination of the industry and medical application of ultrasound therapy, this book highlights working principles, research progress, and system structures of therapeutic ultrasound. It describes the principles of therapeutic ultrasound, details the system construction, introduces current and emerging applications, and discusses developing therapeutic ultrasound technologies. Divided into two parts, the book first introduces the fundamentals of biomedical acoustics, discusses ultrasound calibration methods, and the structures of available therapeutic ultrasound systems before moving on to the various applications of ultrasound therapy used in clinics. It includes a variety of extensive clinical trials, outcome photos and illustrating figures, and a critical commentary on the challenges in this field. The author discusses topics that include: The derivation of wave equation The mathematical solution of the wave propagation The phenomena of reflection Refraction and transmission in the acoustic field from different acoustic sources The radiation pattern of the ultrasound transducer The acoustical properties of biological tissues Ultrasound-induced bioeffects Cavitation The design of the ultrasound transducer The characterization method of the produced acoustic field An easy reference offering full coverage of popular ultrasound therapies, Principles and Applications of Therapeutic Ultrasound in Healthcare provides a simple explanation of fundamental acoustics, including wave equation, propagation, nonlinearity, and transducer design. It also discusses other potential applications, and is geared toward academia, industry, and researchers.

Foundations of Medical Imaging

Author: Zang-Hee Cho
Publisher: Wiley-Interscience
ISBN:
Format: PDF
Download Now
Designed to provide those engaged in modern medical imaging with a coherent perspective of the entire discipline so that one protocol is no longer an isolated or independent mode of imaging from others, to wit: single photon emission computed tomography (SPECT), positron emission tomography (PET) or magnetic resonance imaging (MRI). Introduces biomagnetic imaging as a third new modality.