Principles Practice of Physics Global Edition

Author: Eric Mazur
Publisher: Pearson Higher Ed
ISBN: 1292076496
Format: PDF, ePub, Mobi
Download Now
For Introductory Calculus-based Physics Courses. Putting physics first Based on his storied research and teaching, Eric Mazur’s Principles & Practice of Physics builds an understanding of physics that is both thorough and accessible. Unique organization and pedagogy allow students to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. New learning architecture: The book is structured to help students learn physics in an organized way that encourages comprehension and reduces distraction. Physics on a contemporary foundation: Traditional texts delay the introduction of ideas that we now see as unifying and foundational. This text builds physics on those unifying foundations, helping students to develop an understanding that is stronger, deeper, and fundamentally simpler. Research-based instruction: This text uses a range of research-based instructional techniques to teach physics in the most effective manner possible. The result is a groundbreaking book that puts physics first, thereby making it more accessible to students and easier for instructors to teach. MasteringPhysics® works with the text to create a learning program that enables students to learn both in and out of the classroom. This program provides a better teaching and learning experience for you and your students. Here’s how: Build an integrated, conceptual understanding of physics: Help students gain a deeper understanding of the unified laws that govern our physical world through the innovative chapter structure and pioneering table of contents. Encourage informed problem solving: The separate Practice Volume empowers students to reason more effectively and better solve problems. Personalize learning with MasteringPhysics: MasteringPhysics provides students with engaging experiences that coach them through physics with specific wrong-answer feedback, hints, and a wide variety of educationally effective content. MasteringPhysics is not included. Students, if MasteringPhysics is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MasteringPhysics is not a self-paced technology and should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information. MasteringPhysics is an online homework, tutorial, and assessment product designed to personalize learning and improve results. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.

Handbook of Magnetic Materials

Author:
Publisher: Elsevier
ISBN: 0444638709
Format: PDF
Download Now
Handbook of Magnetic Materials covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share with truly ferromagnetic materials the presence of magnetic moments. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical and tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry, and material science. Comprises topical review articles written by leading authorities Includes a variety of self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature Introduces given topics in the field of magnetism Describes novel trends and achievements in magnetism

The Feynman Lectures on Physics

Author: Richard P. Feynman
Publisher: Basic Books
ISBN: 0465040853
Format: PDF
Download Now
“The whole thing was basically an experiment,” Richard Feynman said late in his career, looking back on the origins of his lectures. The experiment turned out to be hugely successful, spawning publications that have remained definitive and introductory to physics for decades. Ranging from the basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight. Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.

The Physics of Glaciers

Author: W. S. B. Paterson
Publisher: Elsevier
ISBN: 1483293734
Format: PDF, ePub, Docs
Download Now
Explains the physical principles underlying the behaviour of glaciers and ice sheets. Concentrates on the major advances made in most aspects of the subject in the past 30 years with about half devoted to work done in the last 10 years i.e. since the first edition was published. The new edition is updated, expanded and in SI units

The Ontology of Spacetime

Author:
Publisher: Elsevier
ISBN: 9780080461885
Format: PDF
Download Now
This book contains selected papers from the First International Conference on the Ontology of Spacetime. Its fourteen chapters address two main questions: first, what is the current status of the substantivalism/relationalism debate, and second, what about the prospects of presentism and becoming within present-day physics and its philosophy? The overall tenor of the four chapters of the book’s first part is that the prospects of spacetime substantivalism are bleak, although different possible positions remain with respect to the ontological status of spacetime. Part II and Part III of the book are devoted to presentism, eternalism, and becoming, from two different perspectives. In the six chapters of Part II it is argued, in different ways, that relativity theory does not have essential consequences for these issues. It certainly is true that the structure of time is different, according to relativity theory, from the one in classical theory. But that does not mean that a decision is forced between presentism and eternalism, or that becoming has proved to be an impossible concept. It may even be asked whether presentism and eternalism really offer different ontological perspectives at all. The writers of the last four chapters, in Part III, disagree. They argue that relativity theory is incompatible with becoming and presentism. Several of them come up with proposals to go beyond relativity, in order to restore the prospects of presentism. · Space and time in present-day physics and philosophy · Introduction from scratch of the debates surrounding time · Broad spectrum of approaches, coherently represented

Treatise on Process Metallurgy Volume 1 Process Fundamentals

Author:
Publisher: Newnes
ISBN: 0080969879
Format: PDF, ePub, Docs
Download Now
Process metallurgy provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. Coverage is divided into three volumes, entitled Process Fundamentals, encompassing process fundamentals, extractive and refining processes, and metallurgical process phenomena; Processing Phenomena, encompassing ferrous processing; non-ferrous processing; and refractory, reactive and aqueous processing of metals; and Industrial Processes, encompassing process modeling and computational tools, energy optimization, environmental aspects and industrial design. The work distils 400+ years combined academic experience from the principal editor and multidisciplinary 14-member editorial advisory board, providing the 2,608-page work with a seal of quality. The volumes will function as the process counterpart to Robert Cahn and Peter Haasen’s famous reference family, Physical Metallurgy (1996)--which excluded process metallurgy from consideration and which is currently undergoing a major revision under the editorship of David Laughlin and Kazuhiro Hono (publishing 2014). Nevertheless, process and extractive metallurgy are fields within their own right, and this work will be of interest to libraries supporting courses in the process area. Synthesizes the most pertinent contemporary developments within process metallurgy so scientists have authoritative information at their fingertips Replaces existing articles and monographs with a single complete solution, saving time for busy scientists Helps metallurgists to predict changes and consequences and create or modify whatever process is deployed

University Physics

Author: Samuel J. Ling
Publisher:
ISBN: 9781938168185
Format: PDF, Docs
Download Now
"University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library.

Heavy Fermion Systems

Author: Prasanta Misra
Publisher: Elsevier
ISBN: 9780080554679
Format: PDF
Download Now
The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions. · Extensive research references. · Comprehensive review of a very rapidly growing number of theories. · Summary of all important experiments. · Comparison with other highly correlated systems such as High-Tc Superconductors. · Possible Technological applications.

Relativistic Electronic Structure Theory

Author:
Publisher: Elsevier
ISBN: 9780080540474
Format: PDF, Kindle
Download Now
The field of relativistic electronic structure theory is generally not part of theoretical chemistry education, and is therefore not covered in most quantum chemistry textbooks. This is due to the fact that only in the last two decades have we learned about the importance of relativistic effects in the chemistry of heavy and superheavy elements. Developments in computer hardware together with sophisticated computer algorithms make it now possible to perform four-component relativistic calculations for larger molecules. Two-component and scalar all-electron relativistic schemes are also becoming part of standard ab-initio and density functional program packages for molecules and the solid state. The second volume of this two-part book series is therefore devoted to applications in this area of quantum chemistry and physics of atoms, molecules and the solid state. Part 1 was devoted to fundamental aspects of relativistic electronic structure theory whereas Part 2 covers more of the applications side. This volume opens with a section on the Chemistry of the Superheavy Elements and contains chapters dealing with Accurate Relativistic Fock-Space Calculations for Many-Electron Atoms, Accurate Relativistic Calculations Including QED, Parity-Violation Effects in Molecules, Accurate Determination of Electric Field Gradients for Heavy Atoms and Molecules, Two-Component Relativistic Effective Core Potential Calculations for Molecules, Relativistic Ab-Initio Model Potential Calculations for Molecules and Embedded Clusters, Relativistic Pseudopotential Calculations for Electronic Excited States, Relativistic Effects on NMR Chemical Shifts, Relativistic Density Functional Calculations on Small Molecules, Quantum Chemistry with the Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory, and Relativistic Solid State Calculations. - Comprehensive publication which focuses on new developments in relativistic quantum electronic structure theory - Many leaders from the field of theoretical chemistry have contributed to the TCC series - Will no doubt become a standard text for scientists in this field.