Fundamentals of Powder Diffraction and Structural Characterization of Materials Second Edition

Author: Vitalij Pecharsky
Publisher: Springer Science & Business Media
ISBN: 0387095799
Format: PDF, Mobi
Download Now
A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .

X Ray Diffraction for Materials Research

Author: Myeongkyu Lee
Publisher: CRC Press
ISBN: 1315361973
Format: PDF, Docs
Download Now
X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.

Structure of Materials

Author: Marc De Graef
Publisher: Cambridge University Press
ISBN: 1139560476
Format: PDF, ePub, Docs
Download Now
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.

Structure Determination from Powder Diffraction Data

Author: William I. F. David
Publisher: Oxford University Press on Demand
ISBN: 0198500912
Format: PDF
Download Now
Our understanding of the properties of materials, from drugs and proteins to catalysts and ceramics, is almost always based on structural information. This book describes the new developments in the realm of powder diffraction which make it possible for scientists to obtain such information even from polycrystalline materials. Written and edited by experts active in the field, and covering both the fundamental and applied aspects of structure solution from powder diffraction data, this book guides both novices and experienced practitioners alike through the maze of possibilities.

A Practical Guide for the Preparation of Specimens for X Ray Fluorescence and X Ray Diffraction Analysis

Author: Victor E. Buhrke
Publisher: Wiley-VCH
ISBN: 9780471194583
Format: PDF, Mobi
Download Now
The first hands-on guide to XRD and XRF sampling and specimen preparation Systematic errors from poor sampling and improper specimen preparation can easily render X-ray diffraction (XRD) and X-ray fluorescence (XRF) data of questionable use for analysis. But, until now, the practical information that can help to reduce these errors has never been readily available in one volume. This book fills a vital gap in the literature, bringing together a wealth of material previously available only in workbooks, company manuals, and other inside sources. It provides detailed coverage of the major tasks involved in X-ray analysis - complete with theory, step-by-step methods, equipment suggestions, and problem-solving tips. With a full complement of tools and techniques, this comprehensive guide helps both beginners and experienced analysts to make the best decision on sample treatment and get accurate XRD and XRF results-saving valuable time, money, and effort. Covers X-ray techniques for analyzing biological, geological, metallic, ceramic, and other materials * Addresses all aspects of specimen preparation, including handling unusual or very small samples, liquids and solutions, and more * Features special chapters on specimen preparation equipment and XRF standards * Contains useful bibliography and helpful references.

Crystal Structure Determination

Author: Werner Massa
Publisher: Springer Science & Business Media
ISBN: 3662042487
Format: PDF, ePub, Mobi
Download Now
A concise introduction to modern crystal structure determination, emphasizing both the crystallographic background and the successive practical steps. In the theoretical sections, more importance is attached to a good understanding, than to a rigorous mathematical treatment. The most important measuring techniques, including the use of modern area detectors, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Special emphasis is put on the ability to recognize and avoid possible errors and traps, and to judge the quality of results.

Materials Kinetics Fundamentals

Author: Ryan O'Hayre
Publisher: John Wiley & Sons
ISBN: 1118972899
Format: PDF, ePub, Docs
Download Now
Introductory kinetics for the undergrad materials scientist Materials Kinetics Fundamentals is an accessible and interesting introduction to kinetics processes, with a focus on materials systems. Designed for the undergraduate student, this book avoids intense mathematics to present the theory and application of kinetics in a clear, reader-friendly way. Students are first introduced to the fundamental concepts of kinetics, with illustrated diagrams, examples, text boxes, and homework questions that impart a unified, intuitive understanding. Further chapters cover the application of these concepts in the context of materials science, with real-world examples including silicon processing and integrated circuit fabrication, thin-film deposition, carbon-14 dating, steel degassing, energy conversion, and more. Instructor materials including PowerPoint presentations, a test bank, and more are available through the companion website, providing a complete resource for the undergraduate materials science student. At its core, kinetics deals with rates, telling us how fast something will take place – for example, how fast water will evaporate, or how fast molten silicon will solidify. This book is designed to provide students with an introduction to kinetics' underlying principles, without rigorous math to distract from understanding. Understand universally important kinetic concepts like diffusion and reaction rate Model common kinetic processes both quantitatively and qualitatively Learn the mechanisms behind important and interesting materials systems Examine the behaviors, properties, and interactions of relevant solid materials There are a large number of books on chemical kinetics, but there are far fewer that focus on materials kinetics, and virtually none that provide an accessible, introductory-level treatment of the subject. Materials Kinetics Fundamentals fills that need, with clear, detailed explanations of these universal concepts.

Materials Science and Engineering of Carbon

Author: Michio Inagaki
Publisher: Butterworth-Heinemann
ISBN: 0128054689
Format: PDF, ePub
Download Now
Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. Focuses on characterization techniques for carbon materials Authored by experts who are considered specialists in their respective techniques Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials

Elements of X Ray Diffraction

Author: Bernard D. Cullity
Publisher: Pearson
ISBN: 9781292040547
Format: PDF, ePub
Download Now
Designed for Junior/Senior undergraduate courses. This revision of a classical text is intended to acquaint the reader, who has no prior knowledge of the subject, with the theory of x-ray diffraction, the experimental methods involved, and the main applications. The text is a collection of principles and methods designed directly for the student and not a reference tool for the advanced reader

Imperfections in Crystalline Solids

Author: Wei Cai
Publisher: Cambridge University Press
ISBN: 1316571718
Format: PDF
Download Now
This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.