Fundamentals of Power Semiconductor Devices

Author: B. Jayant Baliga
Publisher: Springer Science & Business Media
ISBN: 9780387473147
Format: PDF, Kindle
Download Now
Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Semiconductor Power Devices

Author: Josef Lutz
Publisher: Springer
ISBN: 3319709178
Format: PDF
Download Now
Halbleiter-Leistungsbauelemente sind das Kernstück der Leistungselektronik. Sie bestimmen die Leistungsfähigkeit und machen neuartige und verlustarme Schaltungen erst möglich. In dem Band wird neben den Halbleiter-Leistungsbauelementen selbst auch die Aufbau- und Verbindungstechnik behandelt: von den physikalischen Grundlagen und der Herstellungstechnologie über einzelne Bauelemente bis zu thermomechanischen Problemen, Zerstörungsmechanismen und Störungseffekten. Die 2., überarbeitete Auflage berücksichtigt technische Neuerungen und Entwicklungen.

Advanced Power MOSFET Concepts

Author: B. Jayant Baliga
Publisher: Springer Science & Business Media
ISBN: 9781441959171
Format: PDF, ePub
Download Now
During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.

Fundamentals of Silicon Carbide Technology

Author: Tsunenobu Kimoto
Publisher: John Wiley & Sons
ISBN: 1118313526
Format: PDF, ePub
Download Now
'Fundamentals of Silicon Carbide Technology' covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications.

Fundamentals of Power Electronics

Author: Erickson
Publisher: Springer Science & Business Media
ISBN: 1461576466
Format: PDF, Kindle
Download Now
In many university curricula, the power electronics field has evolved beyond the status of comprising one or two special-topics courses. Often there are several courses dealing with the power electronics field, covering the topics of converters, motor drives, and power devices, with possibly additional advanced courses in these areas as well. There may also be more traditional power-area courses in energy conversion, machines, and power systems. In the breadth vs. depth tradeoff, it no longer makes sense for one textbook to attempt to cover all of these courses; indeed, each course should ideally employ a dedicated textbook. This text is intended for use in introductory power electronics courses on converters, taught at the senior or first-year graduate level. There is sufficient material for a one year course or, at a faster pace with some material omitted, for two quarters or one semester. The first class on converters has been called a way of enticing control and electronics students into the power area via the "back door". The power electronics field is quite broad, and includes fundamentals in the areas of • Converter circuits and electronics • Control systems • Magnetics • Power applications • Design-oriented analysis This wide variety of areas is one of the things which makes the field so interesting and appealing to newcomers. This breadth also makes teaching the field a challenging undertaking, because one cannot assume that all students enrolled in the class have solid prerequisite knowledge in so many areas.

Physics of Semiconductor Devices

Author: Massimo Rudan
Publisher: Springer
ISBN: 3319631543
Format: PDF, Mobi
Download Now
This textbook describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physical concepts, while keeping the internal coherence of the analysis and explaining the different levels of approximation. Coverage includes the main steps used in the fabrication process of integrated circuits: diffusion, thermal oxidation, epitaxy, and ion implantation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS, CMOS), including a number of solid-state sensors. The final chapters are devoted to the measuring methods for semiconductor-device parameters, and to a brief illustration of the scaling rules and numerical methods applied to the design of semiconductor devices.

Power Electronics Basics

Author: Yuriy Rozanov
Publisher: CRC Press
ISBN: 1482298805
Format: PDF, ePub, Mobi
Download Now
Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource: Explains the basic concepts and most important terms of power electronics Describes the power assemblies, control, and passive components of semiconductor power switches Covers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processes Addresses pulse-width modulation, power quality control, and multilevel, modular, and multicell power converter topologies Discusses line-commutated and resonant converters, as well as inverters and AC converters based on completely controllable switches Explores cutting-edge applications of power electronics, including renewable energy production and storage, fuel cells, and electric drives Power Electronics Basics: Operating Principles, Design, Formulas, and Applications supplies graduate students, industry professionals, researchers, and academics with a solid understanding of the underlying theory, while offering an overview of the latest achievements and development prospects in the power electronics industry.

Silicon Carbide Power Devices

Author: B. Jayant Baliga
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9812566058
Format: PDF, Kindle
Download Now
Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices.

Modern power devices

Author: B. Jayant Baliga
Publisher: Wiley-Interscience
ISBN:
Format: PDF
Download Now
Written in a tutorial form, the text supplies in-depth the physics, design, and fabrication technology for power devices. Each chapter includes a discussion of the basic concepts of device operation and their electrical characteristics, a detailed analysis of the device physics, and the technology of fabrication. Extensive analytical solutions are used to enable the reader to obtain an understanding of the physics.