Linear Accelerators for Radiation Therapy Second Edition

Author: David Greene
Publisher: CRC Press
ISBN: 9780750304764
Format: PDF, Kindle
Download Now
Linear Accelerators for Radiation Therapy, Second Edition focuses on the fundamentals of accelerator systems, explaining the underlying physics and the different features of these systems. This edition includes expanded sections on the treatment head, on x-ray production via multileaf and dynamic collimation for the production of wedged and other intensity modulated beams, on electron scattering systems, and on dosimetry. With high-quality illustrations and practical examples throughout, it contains a detailed description of electron beam optics and linear accelerator components. The final chapter explains how to use other equipment, such as scanners and simulators, in conjunction with linear accelerators for optimum treatment of cancers.

Handbook of Anatomical Models for Radiation Dosimetry

Author: Xie George Xu
Publisher: CRC Press
ISBN: 9781420059809
Format: PDF, ePub
Download Now
Over the past few decades, the radiological science community has developed and applied numerous models of the human body for radiation protection, diagnostic imaging, and nuclear medicine therapy. The Handbook of Anatomical Models for Radiation Dosimetry provides a comprehensive review of the development and application of these computational models, known as "phantoms." An ambitious and unparalleled project, this pioneering work is the result of several years of planning and preparation involving 64 authors from across the world. It brings together recommendations and information sanctioned by the International Commission on Radiological Protection (ICRP) and documents 40 years of history and the progress of those involved with cutting-edge work with Monte Carlo Codes and radiation protection dosimetry. This volume was in part spurred on by the ICRP’s key decision to adopt voxelized computational phantoms as standards for radiation protection purposes. It is an invaluable reference for those working in that area as well as those employing or developing anatomical models for a a number of clinical applications. Assembling the work of nearly all major phantom developers around the world, this volume examines: The history of the research and development in computational phantoms Detailed accounts for each of the well-known phantoms, including the MIRD-5, GSF Voxel Family Phantoms, NCAT, UF Hybrid Pediatric Phantoms, VIP-Man, and the latest ICRP Reference Phantoms Physical phantoms for experimental radiation dosimetry The smallest voxel size (0.2 mm), phantoms developed from the Chinese Visible Human Project Applications for radiation protection dosimetry involving environmental, nuclear power plant, and internal contamination exposures Medical applications, including nuclear medicine therapy, CT examinations, x-ray radiological image optimization, nuclear medicine imaging, external photon and proton treatments, and management of respiration in modern image-guided radiation treatment Patient-specific phantoms used for radiation treatment planning involving two Monte Carlo code systems: GEANT4 and EGS Future needs for research and development Related data sets are available for download on the authors’ website. The breadth and depth of this work enables readers to obtain a unique sense of the complete scientific process in computational phantom development, from the conception of an idea, to the identification of original anatomical data, to solutions of various computing problems, and finally, to the ownership and sharing of results in this groundbreaking field that holds so much promise.

Webb s Physics of Medical Imaging Second Edition

Author: M A Flower
Publisher: CRC Press
ISBN: 0750305738
Format: PDF, Docs
Download Now
Since the publication of the best-selling, highly acclaimed first edition, the technology and clinical applications of medical imaging have changed significantly. Gathering these developments into one volume, Webb’s Physics of Medical Imaging, Second Edition presents a thorough update of the basic physics, modern technology and many examples of clinical application across all the modalities of medical imaging. New to the Second Edition Extensive updates to all original chapters Coverage of state-of-the-art detector technology and computer processing used in medical imaging 11 new contributors in addition to the original team of authors Two new chapters on medical image processing and multimodality imaging More than 50 percent new examples and over 80 percent new figures Glossary of abbreviations, color insert and contents lists at the beginning of each chapter Keeping the material accessible to graduate students, this well-illustrated book reviews the basic physics underpinning imaging in medicine. It covers the major techniques of x-radiology, computerised tomography, nuclear medicine, ultrasound and magnetic resonance imaging, in addition to infrared, electrical impedance and optical imaging. The text also describes the mathematics of medical imaging, image processing, image perception, computational requirements and multimodality imaging.

Monte Carlo Calculations in Nuclear Medicine Second Edition

Author: Michael Ljungberg
Publisher: CRC Press
ISBN: 1439841098
Format: PDF, ePub
Download Now
From first principles to current computer applications, Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging covers the applications of Monte Carlo calculations in nuclear medicine and critically reviews them from a diagnostic perspective. Like the first edition, this book explains the Monte Carlo method and the principles behind SPECT and PET imaging, introduces the reader to some Monte Carlo software currently in use, and gives the reader a detailed idea of some possible applications of Monte Carlo in current research in SPECT and PET. New chapters in this edition cover codes and applications in pre-clinical PET and SPECT. The book explains how Monte Carlo methods and software packages can be applied to evaluate scatter in SPECT and PET imaging, collimation, and image deterioration. A guide for researchers and students developing methods to improve image resolution, it also demonstrates how Monte Carlo techniques can be used to simulate complex imaging systems.

Quantifying Morphology and Physiology of the Human Body Using MRI

Author: L. Tugan Muftuler
Publisher: CRC Press
ISBN: 1439852650
Format: PDF, ePub, Mobi
Download Now
In the medical imaging field, clinicians and researchers are increasingly moving from the qualitative assessment of printed images to the quantitative evaluation of digital images since the quantitative techniques often improve diagnostic accuracy and complement clinical assessments by providing objective criteria. Despite this growing interest, the field lacks a comprehensive body of knowledge. Filling the need for a complete manual on these novel techniques, Quantifying Morphology and Physiology of the Human Body Using MRI presents a wide range of quantitative MRI techniques to study the morphology and physiology of the whole body, from the brain to musculoskeletal systems. Illustrating the growing importance of quantitative MRI, the book delivers an indispensable reference for readers who would like to explore in vivo MRI techniques to quantify changes in the morphology and physiology of tissues caused by various disease mechanisms. With internationally renowned experts sharing their insight on the latest developments, the book goes beyond conventional MRI contrast mechanisms to include new techniques that measure electromagnetic and mechanical properties of tissues. Each chapter offers comprehensive information on data acquisition, processing, and analysis techniques as well as clinical applications. The text organizes the techniques based on their primary use either in the brain or the body. Some of the techniques, such as diffusion-weighted imaging and diffusion tensor imaging, span several application areas, including brain imaging, cancer imaging, and musculoskeletal imaging. The book also covers up-and-coming quantitative techniques that explore tissue properties other than the presence of protons (or other MRI-observable nuclei) and their interactions with their environment. These novel techniques provide unique information about the electromagnetic and mechanical properties of tissues and introduce new frontiers of study into disease mechanisms.

Applied Physics of External Radiation Exposure

Author: Rodolphe Antoni
Publisher: Springer
ISBN: 3319486608
Format: PDF, ePub, Mobi
Download Now
This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in different up to date references are presented in this book. The book deals also with accelerators, X-rays facilities, sealed sources, dosimetry, Monte Carlo simulation and radiation regulation. Each chapter is split in two parts depending on the level of details the readers want to focus on. The first part, accessible to a large public, provides a lot of simple examples to help understanding the physics concepts under radiation external exposure. The second part, called “Additional Information” is not mandatory; it aims on explaining topics more deeply, often using mathematical formulations. The book treats fundamental radiometric and dosimetric quantities to describe the interaction in materials under the aspects of absorbed dose processes in tissues. Definitions and applications on limited and operational radiation protection quantities are given. An important aspect are practical engineering tools in industrial, medical and research domains. Source characterization and shielding design are addressed. Also more ”exotic” topics, such as ultra intense laser and new generation accelerators, are treated. The state of the art is presented to help the reader to work with the book in a self-consistent way. The basic knowledge necessary to apply Monte Carlo methods in the field of radiation protection and dosimetry for external radiation exposure is provided. Coverage of topics such as variance reduction, pseudo-random number generation and statistic estimators make the book useful even to experienced Monte Carlo practitioners. Solved problems help the reader to understand the Monte Carlo process. The book is meant to be used by researchers, engineers and medical physicist. It is also valuable to technicians and students.

15th Nordic Baltic Conference on Biomedical Engineering and Medical Physics

Author: Kim Dremstrup
Publisher: Springer Science & Business Media
ISBN: 9783642216831
Format: PDF, ePub, Docs
Download Now
This volume presents the Proceedings of the 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. NBC 2011 brought together science, education and business under the motto “Cooperation for health”. The topics covered by the Conference Proceedings include: Imaging, Biomechanics, Neural engineering, Sport Science, Cardio-pulmonary engineering, Medical Informatics, Ultrasound, Assistive Technology, Telemedicine, and General Biomedical Engineering.

The Essential Physics of Medical Imaging

Author: Jerrold T. Bushberg
Publisher: Lippincott Williams & Wilkins
ISBN: 0781780578
Format: PDF, ePub, Mobi
Download Now
This renowned work is derived from the authors' acclaimed national review course ("Physics of Medical Imaging") at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams.

Revival

Author: Taylor & Francis Group
Publisher:
ISBN: 9781138561564
Format: PDF, Kindle
Download Now