Fundamentals of Solid State Engineering

Author: Manijeh Razeghi
Publisher: Springer Science & Business Media
ISBN: 0387921680
Format: PDF, ePub
Download Now
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics

Fundamentals of Solid State Engineering

Author: M. Razeghi
Publisher: Springer Science & Business Media
ISBN: 0792376293
Format: PDF, Docs
Download Now
Fundamentals of Solid State Engineering is structured in two major parts. It first addresses the basic physics concepts, which are at the base of solid state matter in general and semiconductors in particular. The second part reviews the technology for modern Solid State Engineering. This includes a review of compound semiconductor bulk and epitaxial thin films growth techniques, followed by a description of current semiconductor device processing and nano-fabrication technologies. A few examples of semiconductor devices and a description of their theory of operational are then discussed, including transistors, semiconductor lasers, and photodetectors.

Fundamentals of Solid State Engineering

Author: M. Razeghi
Publisher: Springer Science & Business Media
ISBN: 9780387281520
Format: PDF, ePub, Docs
Download Now
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics, bioelectronics

Fundamentals of Solid state Electronics

Author: Chih-Tang Sah
Publisher: World Scientific
ISBN: 9789810228811
Format: PDF, ePub
Download Now
This Solution Manual, a companion volume of the book, Fundamentals of Solid-State Electronics, provides the solutions to selected problems listed in the book. Most of the solutions are for the selected problems that had been assigned to the engineering undergraduate students who were taking an introductory device core course using this book.This Solution Manual also contains an extensive appendix which illustrates the application of the fundamentals to solutions of state-of-the-art transistor reliability problems which have been taught to advanced undergraduate and graduate students.

Fundamentals of Solid state Electronics

Author: Chih-Tang Sah
Publisher: World Scientific
ISBN: 9789810216238
Format: PDF, ePub, Mobi
Download Now
This companion to Fundamentals of Solid-State Electronics provides a helpful summary of the main text for students and lecturers alike. The clear typeface, large font, and point form layout, are designed to produce viewgraphs for lectures and to provide ample margins for study notes.This Study Guide comes complete with a detailed description of two one-semester solid-state electronics core courses, taught to about 80-100 sophomore-junior students each time, four years apart. It links the contents of the one-semester lecture course to the textbook.

Fundamentals of Solid State Lighting

Author: Vinod Kumar Khanna
Publisher: CRC Press
ISBN: 1466561092
Format: PDF, Mobi
Download Now
Compared to traditional electrical filaments, arc lamps, and fluorescent lamps, solid-state lighting offers higher efficiency, reliability, and environmentally friendly technology. LED / solid-state lighting is poised to take over conventional lighting due to cost savings—there is pretty much no debate about this. In response to the recent activity in this field, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays covers a range of solid-state devices, technologies, and materials used for lighting and displays. It also examines auxiliary but critical requirements of efficient applications, such as modeling, thermal management, reliability, and smart lighting. The book discusses performance metrics of LEDs such as efficiency, efficacy, current–voltage characteristics, optical parameters like spectral distribution, color temperature, and beam angle before moving on to luminescence theory, injection luminescence, radiative and non-radiative recombination mechanisms, recombination rates, carrier lifetimes, and related topics. This lays down the groundwork for understanding LED operation. The book then discusses energy gaps, light emission, semiconductor material, special equipment, and laboratory facilities. It also covers production and applications of high-brightness LEDs (HBLEDs) and organic LEDs (OLEDs). LEDs represent the landmark development in lighting since the invention of electric lighting, allowing us to create unique, low-energy lighting solutions, not to talk about their minor maintenance expenses. The rapid strides of LED lighting technology over the last few years have changed the dynamics of the global lighting market, and LEDs are expected to be the mainstream light source in the near future. In a nutshell, the book traces the advances in LEDs, OLEDs, and their applications, and presents an up-to-date and analytical perspective of the scenario for audiences of different backgrounds and interests.

Quantum Theory of the Solid State

Author: Lev Kantorovich
Publisher: Springer Science & Business Media
ISBN: 9781402018213
Format: PDF, ePub, Mobi
Download Now
"Quantum Physics of the Solid State: an Introduction" Draft foreword: 26/09/03 If only this book had been available when I was starting out in science! It would have saved me countless hours of struggle in trying to apply the general ideas of the standard solid-state text-books to solve real problems. The fact is that most of the texts stop at the point where the real difficulties begin. The great merit of this book is that it describes in an honest and detailed way what one really has to do in order to understand the multifarious properties of solids in terms of the fundamental physical theory of quantum mechanics. University students of the physical sciences are taught about the fundamental the ories, and know that quantum mechanics, together with relativity, is our basis for understanding the physical world. But the practical difficulties of using quantum mechanics to do anything useful are usually not very well explained. The truth is that the application of quantum theory to achieve our present detailed understand ing of solids has required the development of a large array of mathematical tech niques. This is closely analogous to the challenge faced long ago by theoretical astronomers in trying to apply Newton's equations of motion to the heavens -they too had to develop a battery of theoretical and computational techniques to do cal culations that could be compared with observation.