Fundamentals of Strength

Author: Paul S. Follansbee
Publisher: John Wiley & Sons
ISBN: 1118413415
Format: PDF, Kindle
Download Now
Offers data, examples, and applications supporting the use of the mechanical threshold stress (MTS) model Written by Paul S. Follansbee, an international authority in the field, this book explores the underlying theory, mechanistic basis, and implementation of the mechanical threshold stress (MTS) model. Readers are introduced to such key topics as mechanical testing, crystal structure, thermodynamics, dislocation motion, dislocation–obstacle interactions, hardening through dislocation accumulation, and deformation kinetics. The models described in this book support the emerging theme of Integrated Computational Materials Engineering (ICME) by offering a foundation for the bridge between length scales characterizing the mesoscale (mechanistic) and the macroscopic. Fundamentals of Strength begins with a chapter that introduces various approaches to measuring the strength of metals. Next, it covers: Structure and bonding Contributions to strength Dislocation–obstacle interactions Constitutive law for metal deformation Further MTS model developments Data analysis: deriving MTS model parameters The next group of chapters examines the application of the MTS model to copper and nickel, BCC metals and alloys, HCP metals and alloys, austenitic stainless steels, and heavily deformed metals. The final chapter offers suggestions for the continued development and application of the MTS model. To help readers fully understand the application of the MTS model, the author presents two fictional materials along with extensive data sets. In addition, end-of-chapter exercises give readers the opportunity to apply the models themselves using a variety of data sets. Appropriate for both students and materials researchers, Fundamentals of Strength goes beyond theory, offering readers a model that is fully supported with examples and applications.

Fundamentals of Strength Principles Experiment and Applications of an Internal State Variable Constitutive Formulation

Author: CTI Reviews
Publisher: Cram101 Textbook Reviews
ISBN: 1490299963
Format: PDF, Docs
Download Now
Facts101 is your complete guide to Fundamentals of Strength, Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Damage Mechanics

Author: D. Krajcinovic
Publisher: Elsevier
ISBN: 9780080530246
Format: PDF, Mobi
Download Now
This book provides the first truly comprehensive study of damage mechanics. All concepts are carefully identified and defined in micro- and macroscopic scales. In terms of the methods and observation scales, the main part of the book is divided into three chapters. These chapters consider the stochastic models applied to atomistic scale, micromechanical models (for arbitary concentrations of defects) on microscopic scale and continuum models on the macroscopic scale. It is intended for people who are doing or planning to do research in the mechanics and material science aspects of brittle deformation of solids with heterogeneous microstructure.

Integrated Computational Materials Engineering ICME for Metals

Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
ISBN: 1118342658
Format: PDF, ePub
Download Now
State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

Fundamentals of Materials Modelling for Metals Processing Technologies

Author: Jianguo Lin
Publisher: World Scientific Publishing Company
ISBN: 1783264993
Format: PDF, ePub, Docs
Download Now
This book provides a comprehensive introduction to the unique theory developed over years of research on materials and process modelling and its application in metal forming technologies. It starts with the introduction of fundamental theories on the mechanics of materials, computational mechanics and the formulation of unified constitutive equations. Particular attention is paid to elastic–plastic formulations for cold metal forming and unified elastic–viscoplastic constitutive equations for warm/hot metals processing. Damage in metal forming and numerical techniques to solve and determine the unified constitutive equations are also detailed. Examples are given for the application of the unified theories to solve practical problems encountered in metal forming processes. This is particularly useful to predict microstructure evolution in warm/hot metal forming processes. Crystal plasticity theories and modelling techniques with their applications in micro-forming are also introduced in the book. The book is self-contained and unified in presentation. The explanations are highlighted to capture the interest of curious readers and complete enough to provide the necessary background material to further explore/develop new theories and applications.

Unified Constitutive Laws of Plastic Deformation

Author: A. S. Krausz
Publisher: Elsevier
ISBN: 9780080543437
Format: PDF, ePub, Mobi
Download Now
High-technology industries using plastic deformation demand soundly-based economical decisions in manufacturing design and product testing, and the unified constitutive laws of plastic deformation give researchers aguideline to use in making these decisions. This book provides extensive guidance in low cost manufacturing without the loss of product quality. Each highly detailed chapter of Unified Constitutive Laws of Plastic Deformation focuses on a distinct set of defining equations. Topics covered include anisotropic and viscoplastic flow, and the overall kinetics and thermodynamics of deformation. This important book deals with a prime topic in materials science and engineering, and will be of great use toboth researchers and graduate students. Describes the theory and applications of the constitutive law of plastic deformation for materials testing Examines the constitutive law of plastic deformation as it applies to process and product design Includes a program on disk for the determination and development of the constitutive law of plastic deformation Considers economical design and testing methods

Plasmonics Fundamentals and Applications

Author: Stefan Alexander Maier
Publisher: Springer Science & Business Media
ISBN: 9780387378251
Format: PDF, Docs
Download Now
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

Self healing Materials

Author: Swapan Kumar Ghosh
Publisher: John Wiley & Sons
ISBN: 3527625380
Format: PDF, ePub
Download Now
The book covers self-healing concepts for all important material classes and their applications: polymers, ceramics, non-metallic and metallic coatings, alloys, nanocomposites, concretes and cements, as well as ionomers. Beginning with the inspiration from biological self-healing, its mimickry and conceptual transfer into approaches for the self-repair of artificially created materials, this book explains the strategies and mechanisms for the readers' basic understanding, then covers the different material classes and suitable self-healing concepts, giving examples for their application in practical situations. As the first book in this swiftly growing research field, it is of great interest to readers from many scientific and engineering disciplines, such as physics and chemistry, civil, architectural, mechanical, electronics and aerospace engineering.