Gauge Theories in Particle Physics A Practical Introduction

Author: Ian J R Aitchison
Publisher: CRC Press
ISBN: 1466512997
Format: PDF, ePub, Docs
Download Now
Volume 1 of this revised and updated edition provides an accessible and practical introduction to the first gauge theory included in the Standard Model of particle physics: quantum electrodynamics (QED). The book includes self-contained presentations of electromagnetism as a gauge theory as well as relativistic quantum mechanics. It provides a unique elementary introduction to quantum field theory, establishing the essentials of the formal and conceptual framework upon which the subsequent development of the three gauge theories is based. The text also describes tree-level calculations of physical processes in QED and introduces ideas of renormalization in the context of one-loop radiative corrections for QED. New to the Fourth Edition New chapter on Lorentz transformations and discrete symmetries in relativistic quantum mechanics, with physical applications Introduction of Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics Discrete symmetries in quantum field theory Updates on nucleon structure functions and the status of QED The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Gauge Theories in Particle Physics

Author: I.J.R. Aitchison
Publisher: CRC Press
ISBN: 9780849387753
Format: PDF, Docs
Download Now
Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this two-volume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and self-contained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED; the second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.

Gauge Theories in Particle Physics A Practical Introduction Fourth Edition 2 Volume set

Author: Ian J.R. Aitchison
Publisher: CRC Press
ISBN: 9781466513174
Format: PDF, ePub, Docs
Download Now
The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Gauge Theories in Particle Physics A Practical Introduction Volume 2 Non Abelian Gauge Theories

Author: Ian J R Aitchison
Publisher: CRC Press
ISBN: 1466513071
Format: PDF
Download Now
Volume 2 of this revised and updated edition provides an accessible and practical introduction to the two non-Abelian quantum gauge field theories of the Standard Model of particle physics: quantum chromodynamics (QCD) and the Glashow-Salam-Weinberg (GSW) electroweak theory. This volume covers much of the experimental progress made in the last ten years. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles in neutrino physics. Exploring a new era in particle physics, this edition discusses one of the most recent and exciting breakthroughs—the discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. New to the Fourth Edition New chapter on CP violation and oscillations in mesonic and neutrino systems New section on three-generation quark mixing and the CKM matrix Improved discussion of two-jet cross section in electron-positron annihilation New section on jet algorithms Recent lattice QCD calculations with dynamical fermions New section on effective Lagrangians for spontaneously broken chiral symmetry, including the three-flavor extension, meson mass relations, and chiral perturbation theory Update of asymptotic freedom Discussion of the historic discovery of a Higgs-like boson The authors discuss the main conceptual points of the theories, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.

Gauge Theories in Particle Physics Third Edition 2 volume set

Author: Ian J.R. Aitchison
Publisher: CRC Press
ISBN: 9780750309820
Format: PDF, Docs
Download Now
This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.

An Introduction to Gauge Theories

Author: Nicola Cabibbo
Publisher: CRC Press
ISBN: 1315352710
Format: PDF, Docs
Download Now
Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman’s path integrals. Key elements of gauge theories are described—Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts—as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." —John Iliopoulos, CNRS-Ecole Normale Supérieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." —Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico’s National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." —Mikhail Voloshin, Professor of Physics, University of Minnesota

Quantum Field Theory

Author: Lewis H. Ryder
Publisher: Cambridge University Press
ISBN: 9780521478144
Format: PDF, ePub, Mobi
Download Now
This book is a modern introduction to the ideas and techniques of quantum field theory. After a brief overview of particle physics and a survey of relativistic wave equations and Lagrangian methods, the author develops the quantum theory of scalar and spinor fields, and then of gauge fields. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a brief survey of "topological" objects in field theory and, new to this edition, a chapter devoted to supersymmetry. Graduate students in particle physics and high energy physics will benefit from this book.

Gauge Theory of Elementary Particle Physics

Author: Ta-Pei Cheng
Publisher: Oxford University Press
ISBN: 9780198519614
Format: PDF, ePub
Download Now
This is a practical introduction to the principal ideas in gauge theory and their applications to elementary particle physics. It explains technique and methodology with simple exposition backed up by many illustrative examples. Derivations, some of well known results, are presented in sufficient detail to make the text accessible to readers entering the field for the first time. The book focuses on the strong interaction theory of quantum chromodynamics and the electroweak interaction theory of Glashow, Weinberg, and Salam, as well as the grand unification theory, exemplified by the simplest SU(5) model. Not intended as an exhaustive survey, the book nevertheless provides the general background necessary for a serious student who wishes to specialize in the field of elementary particle theory. Physicists with an interest in general aspects of gauge theory will also find the book highly useful.

Introduction to Particle and Astroparticle Physics

Author: Alessandro De Angelis
Publisher: Springer
ISBN: 8847026881
Format: PDF, ePub, Docs
Download Now
This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used as a self-training book, a consultation book, or a textbook providing a “modern” approach to particles and fundamental interactions.

Lie Algebras In Particle Physics

Author: Howard Georgi
Publisher: CRC Press
ISBN: 0429967764
Format: PDF
Download Now
Howard Georgi is the co-inventor (with Sheldon Glashow) of the SU(5) theory. This extensively revised and updated edition of his classic text makes the theory of Lie groups accessible to graduate students, while offering a perspective on the way in which knowledge of such groups can provide an insight into the development of unified theories of strong, weak, and electromagnetic interactions.