Generalized Linear Models Second Edition

Author: P. McCullagh
Publisher: CRC Press
ISBN: 9780412317606
Format: PDF, ePub, Docs
Download Now
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.

Nonparametric Regression and Generalized Linear Models

Author: P.J. Green
Publisher: CRC Press
ISBN: 9780412300400
Format: PDF, ePub
Download Now
In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.

Generalized Linear Models with Random Effects

Author: Youngjo Lee
Publisher: CRC Press
ISBN: 9781420011340
Format: PDF, ePub, Docs
Download Now
Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors. Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of which can be run by using the code supplied on the accompanying CD, this book is beneficial to statisticians and researchers involved in the above applications as well as quality-improvement experiments and missing-data analysis.

Generalized Additive Models

Author: T.J. Hastie
Publisher: CRC Press
ISBN: 9780412343902
Format: PDF, ePub, Docs
Download Now
This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

Linear Models with R Second Edition

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 1439887330
Format: PDF
Download Now
A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Applying Generalized Linear Models

Author: James K. Lindsey
Publisher: Springer Science & Business Media
ISBN: 038722730X
Format: PDF, Docs
Download Now
This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Robust Nonparametric Statistical Methods Second Edition

Author: Thomas P. Hettmansperger
Publisher: CRC Press
ISBN: 1439809097
Format: PDF
Download Now
Presenting an extensive set of tools and methods for data analysis, Robust Nonparametric Statistical Methods, Second Edition covers univariate tests and estimates with extensions to linear models, multivariate models, times series models, experimental designs, and mixed models. It follows the approach of the first edition by developing rank-based methods from the unifying theme of geometry. This edition, however, includes more models and methods and significantly extends the possible analyses based on ranks. New to the Second Edition A new section on rank procedures for nonlinear models A new chapter on models with dependent error structure, covering rank methods for mixed models, general estimating equations, and time series New material on the development of computationally efficient affine invariant/equivariant sign methods based on transform-retransform techniques in multivariate models Taking a comprehensive, unified approach to statistical analysis, the book continues to describe one- and two-sample problems, the basic development of rank methods in the linear model, and fixed effects experimental designs. It also explores models with dependent error structure and multivariate models. The authors illustrate the implementation of the methods using many real-world examples and R. More information about the data sets and R packages can be found at www.crcpress.com

Generalized Additive Models

Author: Simon N. Wood
Publisher: CRC Press
ISBN: 1498728375
Format: PDF, ePub, Mobi
Download Now
The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Transformation and Weighting in Regression

Author: Raymond J. Carroll
Publisher: Routledge
ISBN: 1351407260
Format: PDF, ePub
Download Now
This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.

Statistical Learning with Sparsity

Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Format: PDF, ePub
Download Now
Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.