Geocomplexity and the Physics of Earthquakes

Author: John Rundle
Publisher: American Geophysical Union
ISBN: 0875909787
Format: PDF, ePub
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.

Geocomplexity and the Physics of Earthquakes

Author: John Rundle
Publisher: American Geophysical Union
ISBN: 0875909787
Format: PDF, Kindle
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.

Computational Earthquake Physics Simulations Analysis and Infrastructure

Author: Xiang-chu Yin
Publisher: Springer Science & Business Media
ISBN: 3764381310
Format: PDF, Docs
Download Now
This second part of a two-volume work contains 22 research articles on various aspects of computational earthquake physics. Coverage includes the promising earthquake forecasting model LURR (Load-Unload Response Ratio); pattern informatics and phase dynamics and their applications; computational algorithms, including continuum damage models and visualization and analysis of geophysical datasets; and assimilation of data.

Computational earthquake science 1

Author: Andrea Donnellan
Publisher: Springer Science & Business Media
ISBN: 9783764371425
Format: PDF, ePub
Download Now
Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part I of the book covers microscopic simulations, scaling physics and earthquake generation and cycles. This part also focuses on plate processes and earthquake generation from a macroscopic standpoint.

Selected Papers From Volumes 33 and 34 of Vychislitel naya Seysmologiya

Author: Alik Ismail-Zade
Publisher: John Wiley & Sons
ISBN: 1118671724
Format: PDF, Mobi
Download Now
Published by the American Geophysical Union as part of the Computational Seismology and Geodynamics Series, Volume 8. The American Geophysical Union (AGU) and the Editorial Board of Computational Seismology and Geodynamics (CSG) are happy to present the eighth volume of CSG. This volume contains 19 selected, translated, and reviewed articles of volumes 33 and 34 of Vychislitel'naya Seismologiya (VS), which deal with seismicity and seismic hazard, forward and inverse problems in seismology, geodynamics, geomagnetism, and self-organized criticality. The Russian annual journal Vychislitel'naya Seysmologiya was established in 1966 by Volodya Keilis-Borok, one of most eminent geophysicists of our time, as a media for publication of the best results in the theoretical, computational and mathematical seismology. For a short period of time the journal had become a prominent and known among mathematical geophysicists around the world. In 1970s the journal began to publish also articles related to non-linear dynamics and earthquake prediction and later to computational geodynamics. Many distinguished seismologists, geophysicists, and mathematicians, like G. Barenblatt, A. Dziewonski, I. Gelfand, H. Huppert, H. Kanamori, L. Kantorovich, L. Knopoff, F. Press, D. Turcotte, and others, published their research articles in VS. Twenty-one volumes of the journal were translated and published by Allerton Press, USA. Since 1994 AGU agreed to publish selected and peer-reviewed articles in volumes entitled CSG. Volume 1 (159 pp.) 1994 selected articles from Volumes 22 & 23 Volume 2 (188 pp.) 1994 selected articles from Volumes 24 & 25 Volume 3 (236 pp.) 1996 selected articles from Volumes 26 & 27 Volume 4 (200 pp.) 1999 selected articles from Volumes 28 & 29 Volume 5 (132 pp.) 2003 selected articles from Volume 30 Volume 6 (102 pp.) 2004 selected articles from Volume 31 Volume 7 (250 pp.) 2005 selected articles from Volume 32 Volume 8 (186 pp.) 2008 selected articles from Volumes 33 & 34

The Seismogenic Zone of Subduction Thrust Faults

Author: Timothy H. Dixon
Publisher: Columbia University Press
ISBN: 0231512015
Format: PDF, Mobi
Download Now
Subduction zones, one of the three types of plate boundaries, return Earth's surface to its deep interior. Because subduction zones are gently inclined at shallow depths and depress Earth's temperature gradient, they have the largest seismogenic area of any plate boundary. Consequently, subduction zones generate Earth's largest earthquakes and most destructive tsunamis. As tragically demonstrated by the Sumatra earthquake and tsunami of December 2004, these events often impact densely populated coastal areas and cause large numbers of fatalities. While scientists have a general understanding of the seismogenic zone, many critical details remain obscure. This volume attempts to answer such fundamental concerns as why some interplate subduction earthquakes are relatively modest in rupture length (greater than 100 km) while others, such as the great (M greater than 9) 1960 Chile, 1964 Alaska, and 2004 Sumatra events, rupture along 1000 km or more. Contributors also address why certain subduction zones are fully locked, accumulating elastic strain at essentially the full plate convergence rate, while others appear to be only partially coupled or even freely slipping; whether these locking patterns persist through the seismic cycle; and what is the role of sediments and fluids on the incoming plate. Nineteen papers written by experts in a variety of fields review the most current lab, field, and theoretical research on the origins and mechanics of subduction zone earthquakes and suggest further areas of exploration. They consider the composition of incoming plates, laboratory studies concerning sediment evolution during subduction and fault frictional properties, seismic and geodetic studies, and regional scale deformation. The forces behind subduction zone earthquakes are of increasing environmental and societal importance.