Geometric Mechanics Part II

Author: Darryl D. Holm
Publisher: World Scientific
ISBN: 9781848167773
Format: PDF, ePub, Mobi
Download Now
Advanced undergraduate and graduate students in mathematics, physics and engineering.

Geometric Mechanics

Author: Darryl D Holm
Publisher: World Scientific Publishing Company
ISBN: 1911298658
Format: PDF, ePub, Mobi
Download Now
See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level. The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie–Poisson Hamiltonian formulations and momentum maps in physical applications. The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly. The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications. Contents: Fermat's Ray Optics:Fermat's principleHamiltonian formulation of axial ray opticsHamiltonian form of optical transmissionAxisymmetric invariant coordinatesGeometry of invariant coordinatesSymplectic matricesLie algebrasEquilibrium solutionsMomentum mapsLie–Poisson bracketsDivergenceless vector fieldsGeometry of solution behaviourGeometric ray optics in anisotropic mediaTen geometrical features of ray opticsNewton, Lagrange, Hamilton and the Rigid Body:NewtonLagrangeHamiltonRigid-body motionSpherical pendulumLie, Poincaré, Cartan: Differential Forms:Poincaré and symplectic manifoldsPreliminaries for exterior calculusDifferential forms and Lie derivativesLie derivativeFormulations of ideal fluid dynamicsHodge star operator on ℝ3Poincaré's lemma: Closed vs exact differential formsEuler's equations in Maxwell formEuler's equations in Hodge-star form in ℝ4Resonances and S1 Reduction:Dynamics of two coupled oscillators on ℂ2The action of SU(2) on ℂ2Geometric and dynamic S1 phasesKummer shapes for n:m resonancesOptical travelling-wave pulsesElastic Spherical Pendulum:Introduction and problem formulationEquations of motionReduction and reconstruction of solutionsMaxwell-Bloch Laser-Matter Equations:Self-induced transparencyClassifying Lie–Poisson Hamiltonian structures for real-valued Maxwell–Bloch systemReductions to the two-dimensional level sets of the distinguished functionsRemarks on geometric phasesEnhanced Coursework:Problem formulations and selected solutionsIntroduction to oscillatory motionPlanar isotropic simple harmonic oscillator (PISHO)Complex phase space for two oscillatorsTwo-dimensional resonant oscillatorsA quadratically nonlinear oscillatorLie derivatives and differential formsExercises for Review and Further Study:The reduced Kepler problem: Newton (1686)Hamiltonian reduction by stagesℝ3 bracket for the spherical pendulumMaxwell–Bloch equationsModulation equationsThe Hopf map2:1 resonant oscillatorsA steady Euler fluid flowDynamics of vorticity gradientThe C Neumann problem (1859) Readership: Advanced undergraduate and graduate students in mathematics, physics and engineering; non-experts interested in geometric mechanics, dynamics and symmetry.

Dynamical Systems and Geometric Mechanics

Author: Jared Maruskin
Publisher: de Gruyter
ISBN: 3110597802
Format: PDF, Docs
Download Now
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.

Introduction to Dynamical Systems and Geometric Mechanics

Author: Jared M. Maruskin
Publisher: Solar Crest Publishing LLC
ISBN: 0985062711
Format: PDF, ePub, Docs
Download Now
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincar maps, Floquet theory, the Poincar -Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.

Lie Groups Differential Equations and Geometry

Author: Giovanni Falcone
Publisher: Springer
ISBN: 3319621815
Format: PDF, ePub, Mobi
Download Now
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

Cartan for Beginners

Author: Thomas Andrew Ivey
Publisher: American Mathematical Soc.
ISBN: 0821833758
Format: PDF, ePub
Download Now
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Geometric Mechanics

Author: Darryl D Holm
Publisher: World Scientific Publishing Company
ISBN: 1911299336
Format: PDF, Docs
Download Now
This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. It treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level. Variational calculus on tangent spaces of Lie groups is explained in the context of familiar concrete examples. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, and then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints. The 120 Exercises and 55 Worked Answers help the student to grasp the essential aspects of the subject, and to develop proficiency in using the powerful methods of geometric mechanics. In addition, all theorems are stated and proved explicitly. The book's many examples and worked exercises make it ideal for both classroom use and self-study. Contents: GalileoNewton, Lagrange, HamiltonQuaternionsQuaternionic ConjugacySpecial Orthogonal GroupThe Special Euclidean GroupGeometric Mechanics on SE(3)Heavy Top EquationsThe Euler–Poincaré TheoremLie–Poisson Hamiltonian FormMomentum MapsRound Rolling Rigid Bodies Readership: Advanced undergraduate and graduate students in mathematics, physics and engineering; researchers interested in learning the basic ideas in the fields; non-experts interested in geometric mechanics, dynamics and symmetry.

Geometric Mechanics and Symmetry

Author: Darryl D. Holm
Publisher: Oxford University Press
ISBN: 0199212902
Format: PDF, ePub, Mobi
Download Now
Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject.The modern geometric approach illuminates and unifies manyseemingly disparate mechanical problems from several areas of science and engineering. In particular, the book concentrates on the similarities between finite-dimensional rigid body motion and infinite-dimensional systems such asfluid flow. The illustrations and examples, together with a large number of exercises, both solved and unsolved, make the book particularly useful.

Mathematical Methods of Classical Mechanics

Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Format: PDF, Kindle
Download Now
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.